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Abstract—The operations of devices in automated, possibly
in hostile environments, puts the dependability and reliability
of the IoT systems at stake. More specifically, adversaries
may tamper with the devices, tamper with sensor values
triggering false alarms, instrument the data gathering and
overall operation to their own interest. Protecting integrity and
confidentiality of IoT devices from tampering attempts is a big
challenge. Protection against code tampering is the focal point
of this research. This paper entails a contemporary method-
ology to guard the code against exploitation. The approach
focuses on a novel distributed solution by which the tamper
resistance of the program code is magnified by the inclusion
of two modules that work in tandem with each other. These
security modules employ Return Oriented Programming (ROP)
techniques and code check-summing techniques to protect
critical pieces of code. When working together they provide
dual lines of defence to the critical piece of code where the
malicious entity has to bypass both the modules in order to
tamper the critical piece of code thereby hardening the overall
security and increasing the cost of exploitation drastically
making it infeasible to mount an attack on IoT devices.
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I. INTRODUCTION

Smart connectivity with the existing networks and
context-aware computation using network resources is an
indispensable part of an Internet of Things (IoT) environ-
ment. But this prominent feature comes with threat where
an adversary may tamper the code or clone IoT devices for
his or her benefit. Malicious code injection has been a major
bottleneck for either providing a service from a stand-alone
machine or receiving a service from a remote server. The
importance of this attack is presented substantially in the
recent targeted threats like Heartbleed [5] and Shellshock
[10].

Initially, Return Oriented Programming (ROP) found it’s
usage as an exploitation procedure that permits the ren-
dering of the arbitrary code in the presence of W ⊕ X
[15]. Gadgets which are, in fact, short return-terminated
instruction sequences are in a chain fashion constructed by
the arrangement of their respective addresses on the stack.
Each return that gets concluded shifts the locus of control to
the next available gadget. ROP behaves as a Turing complete
programming technique, in the presence of abundant number
of gadgets, which can execute random computations on the
top of a host program. In most of the programs, a presence
of a Turing complete gadget is witnessed [14].

The code verification methodology adds to the robust-
ness of the code by the inclusion of ROP gadgets in it.
Instructions are tabbed from a program under protection
and are translated into ROP chains which implement the
overlapping gadgets. Translated instructions malfunction if
the gadget undergo some sort of tampering. This helps in
implicit verification of the integrity of the protected code.
Thus, the rendered instructions are referred as verification
code [1]. In order to address the issues mentioned above
we used cross verifying code check-sums [4] in conjunction
with ROP so as to provide multiple lines of defence against
code tampering by a malicious entity.

Our work presents a security blueprint for protection of
program code against tampering. The primitive ideas to a
modified, generalized setting is proposed in which a program
is preserved by a legion of functional units, such as, gadgets,
guards etc. in integration with the program. The attackers
are prevented from predicting the form of the chain by
a multitude of methodologies to construct the ROP chain
which protects the network. In due course, the number of
gadgets can be escalated to a required number substantiat-
ing the desired level of protection. Existing code tamper
proofing methods, such as, Control Flow Integrity(CFI)
[17], code protection by inclusion of guards [4] etc. have
contributed significantly to run-time overhead which leads
to a deterioration in performance. The work done in this
research does not degrade the run time performance of
the ROP augmented code as compared to the normal code
significantly.

The organization of the rest of paper is detailed as follows.
Section II discusses related work, Section III discusses
background, while Section IV provides an overview. In
Section V, we describe the experimental results, and we
summarize our work in Section VI.

II. RELATED WORK

Andriesse et al. [1] created ROP chains for protecting the
code. But, ROP alone is not sufficient to mitigate run time
attacks. In this work we add another layer of protection.

According to Roundy et al. [12] and Saidi et al. [13], code
protection primitives like integrity verification are widely
used in practice to delay reverse engineering attacks, and
to deter non-persistent adversaries. However, methods like
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TABLE I: Available CPU Architecture Defence

Architecture Type ASLR NX ROP-Attack

X86 CISC YES YES YES
X64 CISC YES YES YES

ARM RISC YES YES YES
ARM64 RISC YES YES YES
MIPS RISC YES YES YES

ROP can easily break the code protection integrity without
modifying the program code.

Control Flow Integrity (CFI) is another technique that
prevents subvert of machine code from exploitation. But it
is a static method and is not able to protect code from ROP
based attacks [2]. There are plethora of other software based
approaches for addressing the above said problem which
might range from usage of self-modifying code [8] (code
that generates other code at run-time) to usage of encryption
and decryption mechanisms.

After ten years of the discovery of the return-to-libc tech-
nique, the wide adoption of non-executable memory page
protections in popular Operating Systems raised curiosity
in the endeavours to avert advanced form of code reuse
attacks. As far as authors know, other than Andriesse et
al. [1] no other researcher has used ROP as a defensive
mechanism. Authors in [1] have suggested usage of check-
summing as a possible measure of second line of defence
which we intend to propose in this work. We have also
explored strengthening of security strength of the IoT code
by devising cross-referencing guards using check-sums to
protect one another.

III. BACKGROUND

A. Return-Oriented Programming

Return Oriented Programming (ROP) is a generalized
technique of return-into-libc [15] attacks by virtue of which
an attacker can motivate the program to boomerang back
to arbitrary points embedded in the code. This grants one
to operate malicious computations without the necessity of
injection of any new malicious code by obtaining control
of the execution flow. This section, in particular, details a
concise sketch of ROP [3].

Table I shows that the ROP functionality can be clearly
depicted in various platforms including x86 [15], SPARC
[3] and ARM [9]. ROP uses short instruction sequences
profoundly that can be found in a host’s program memory
space mostly identified as gadgets, each of which terminates
with a return instruction. A stack encapsulates a chain of
gadget addresses that constitute the ROP program such
that with the termination of each gadget via each return
instruction the control gets transferred to the immediate
neighbouring gadget in the chain thus, forming the modus
operandi of this approach.

Fig.1 describes the manner in which the ROP chain works.
The stack pointer (esp) points to the address referring to

Fig. 1: ROP Chain with Gadgets

the first gadget g1 in the chain. Once the return instruction
is executed the control shifts to the current gadget. On
performing a pop operation, the stack gets loaded with a
binary code value (that is subsequent to eax register) into
the eax register that, in turn, increments esp to point to the
gadget g2. The ret instruction in gadget g1 helps in the
transfer of control to gadget g2 that helps to perform next
instruction fetched from memory. Gadget g2 now returns to
gadget g3 and the process continues until all other gadgets
g4, . . . , gn are executed [15].

B. Check-sum code

The guard, in particular, is nothing but a code fragment
that helps in the execution of certain security sensitive
actions that take place during the execution of the program.
Guards offer the flexibility to do any computation, e.g.,
whether its check-summing another code fragment at the
point of runtime and check it’s integrity (i.e., to review
if the code has not been tampered) etc. In case the code
that has been guarded is found altered, the guard possesses
the authority to fire the suitable actions necessary at that
moment. These actions might range from silent login of the
detection event to making the software inoperative, e.g., by
means of halting the execution that may lead to a crash that
will be untraceable to the guard in question. The programs
shielded by check-summing techniques are in some way
aware of their own individual integrity [4].

C. Threat Model

The hostile host threat model forms the base model for
verifying tamper-proofing techniques. It is presumed that the
application made tamper proof is performed on a system
that is controlled by a hostile user, which holds the entire
control on the runtime environment and might be modifying
the tamper-proofed executable. The sole intention of the
hostile user is presumed to bypass access controls in the
protected application, in particular, anti-debugging checks.
The challenge faced by our tamper-proofing methodology is
to maximize the attempts required by the user to be success-
ful in tampering with the protected code without considering
the trusted components in the runtime environment [1].
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Fig. 2: IoT Architecture

(a) Identifying Critical Pieces of Code to be Protected

(b) Deploy Check-sum Guard Over the Critical Code

(c) Create a ROP Function Which Uses Random Gadgets from
Binary File

Fig. 3: An Overview of Code Protection Model

IV. OVERVIEW OF THE SYSTEM

A. IoT

Fig. 2 shows three layer architecture [18] [16] of our test-
bed developed at our campus. In this test-bed there are var-
ious types of sensors like light, temperature, smoke, energy
etc. used. IoT node collects all sensor values and passes
it to gateway layer. Gateway layer pre-processes collected
data and passes it to the server. Server uses this data for
triggering various autonomous and intelligent activities like
finding the presence of a person in a room etc.

B. Proposed system security

Our technique protects against memory corruption in both
static and dynamic way. Thus, we protect against attacks
ranging from the circumvention of anti-debugging checks
to large-scale software cracking. Fig. 3 illustrates how our
system protects a binary.

We protect the IoT code by overlapping ROP gadgets
within it. Selected instructions from the protected program
are translated into ROP chains which use the overlapping
gadgets. Since tampering with the gadgets cause the trans-
lated instructions to malfunction, this implicitly verifies the
integrity of the protected code. Thus, we refer to these
translated instructions as verification code [1].

Fig. 4: Heuristics for Finding Security Sensitive Code [7]

To protect code integrity we generate ROP gadget pay-
load, insert this payload into verification function and then
with the help of gcc we find assembly level code and
then apply check-summing method. In the check-summing
method we insert a cross verifying network of guards on the
code, these guards protect ROP chain and security sensitive
area in the IoT code.

C. Security sensitive code

The attacker mainly tries to identify access control points
in the code and tries to circumvent them. We consider
following types of code as security sensitive:

• User Authentication Points
• Memory vulnerabilities
• Anti-Debugging Checks

To collect these security sensitive points we use PIN tool
[11], flaw finder [6] etc. tools and use following heuristics
[7]:

• DB - Branches that were taken in one case and not
taken in another.

• DF - Functions that returned 1 in one case and 0 in
another.

1) A DB is located inside a DF. This could mean that the
function returns 0 or 1 depending on the branch being taken
or not.
2) DB is located inside the parent function of a DF. This
means that the parent function actually performs the authen-
tication and returns the respective value. In our case both the
DB as well as the branch inside the parent function can be
considered as critical points in the program.

D. Algorithm

In algorithm 1, we exhibit how to frame a payload with
ROP chain. Every gadget ends with a return statement
so it can be used for creating a ROP chain. Then we
prepare a list of security sensitive functions for protection
from the existing program. Now we put gadget payload to
verification function which decides the execution sequence.
Thus, we controlled normal execution of the program. After
uploading the payload, execution is carried out according to
the ROP chain. Here, construction of ROP chain is random.
It is extremely time consuming for an adversary to reverse
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Algorithm 1 Algorithm to generate a ROP chain

Input: G : set of gadgets[g1,g2..., gn], A : Addresses of
functions and security sensitive code

Output: payload (PL) with ROP chain.
1: if (A.length > 0) then
2: for i = 0 to length of A[] do
3: PL← rand(G[n]);
4: PL← A[i];
5: PL← rand(G[n]);
6: end for
7: end if
8: return payload with ROP chain.

engineer the ROP chain and decode the execution sequence.
Even though the self-verification defense mechanism used
above is a robust technique but still has some shortcomings
discussed in the previous sections which we rectify using a
network of cross verifying checksum guards.

Algorithm 2 explain overall method to generate tamper-
proof code protection using checksum guard and ROP chain.
The guards are working in protecting the code segments and
in addition the guards protect each other as well. This is done
so as to ensure that the code segments as well as the guards
themselves are protected from tampering.

Algorithm 2 Algorithm to construct check-sum

Input: Assembly level code,Vulnerable function set V.
Output: Check-sum and ROP protected code

1: Assign key and test variable with pre-calculated register
value.

2: ebx← valueofchecksumguard.
3: Set clientstart in the beginning of code to be protected.
4: ecx← clientstart.
5: Every instruction, compare ecx with clientend.
6: while ecx < clientend do
7: ebx= dword[ecx]+ebx
8: ecx= ecx+4
9: end while

10: If it is greater than corrupt ebp register value and
generate segmentation fault.

11: Set clientend at the end of code.
12: Perform XOR test on variable key and test.
13: if (result == 0) then
14: exit normally
15: else
16: Corrupt ebp register.
17: end if
18: if (Address of ROP gadget changed) then
19: Call algorithm 1
20: end if
21: return Check-sum and ROP protected assembly level

code

Now we add check-sum guard as per the guard template.
During instantiating of the guard, the system initializes

Fig. 5: Verification Function

clientstart and clientend with the addresses of the target
code range that the guard needs to protect. The check-
sum value is obtained by the system. In this experiment
we deploy two guards. First guard protects whole code and
second guard. Second guard protects first guard. If any of
the guards get corrupted then it will generate segmentation
fault. In addition to this, XOR test is also applied in this
code. At the end we apply the ROP chain.

E. System description

We have built a security mechanism that includes verifi-
cation function as shown in Fig. 5.

This function contains simple ROP chain for our hot code.
In this verification function we mention address of our hot
code, this critical code (hot code) will not run without the
help of this verification function. This contains a execution
chain, if adversary tampers it, the execution stops. To protect
this chain we add a cross verifying network of check-sum
guards as well. These guards are responsible for performing
code check-summing. Algorithm 2 inserts a guard template,
which is given the functionality to corrupt stack frame
pointer ebp in case the computed check-sum is found to
be different from the pre-calculated check-sum.

These guards will protect our code in assembly level. Af-
ter completing this we recalculate ROP chain for verification
function and hot code and put in a verification template that
is shown in Fig. 5. This will protect our code in data cache.
Then finally we create executable file of that code which is
tamper proof [4].

V. EXPERIMENTAL RESULTS

In this section, the robustness of this technique is tested
against hostile entities and the resources required and over-
heads while mounting this security measure have been
evaluated.

A. Experimental setup

The security measures were mounted and tested on C
programs which were being run both on laptop running
Ubuntu as well as on IoT test-bed which has been developed
in our campus.

In our naively developed IoT test-bed, the IoT nodes
capture various sensor values like temperature, light, motion,
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TABLE II: Experiment Environment

Resource System1 System2

Category Laptop IoT Node
OS Ubuntu Linux

CPU Core i5 Intel Quark
Cache 3072 KB L2 16 KB
RAM 4 GB 256 MB

Fig. 6: Random Selection of Gadgets from Binary

energy etc. and send them to a server via gateway. Fig. 7
shows run time performance evaluation that shows negligible
performance overhead.

For generalization we also test our code protection method
on Ubuntu 14.0, which work well on both the environments.

B. Security

In this section we discuss attack resistance of our code.
1) Impact on attack resistance: Return Oriented Pro-

gramming has certain vulnerabilities as discussed before
when used as a standalone technique. Deploying code check-
sum in conjunction with ROP addresses the vulnerabilities
discussed by providing a second line of defense to the
critical pieces of code. We have experimentally found out
that the only way an attacker can come in and tamper
with the critical piece of code is only if he circumvents
both the ROP functionality and the code check-sum guard
network that we have put into place. But ROP chain created
with random selection of gadgets and with random length
of chain makes the task of an attacker difficult. Fig. 6
shows random selection of gadgets from available gadgets
in binary. Random ROP chain consists of hexadecimal
addresses of specified length taken from some set of gadgets
using a random selection process in which each gadget is
equally likely to be selected. The gadget can be individually
collected addresses from a binary. The strength of ROP chain
depends on the actual entropy of the underlying number
generator. This technique serves the purpose of hardening
the security. The amount of effort and computation power
that the attacker will have to put in order to bypass these

TABLE III: Statistics of Protection Mechanism

S.No. Type of Binary File Size Security Level
1 Plain 734.5 KB ASLR,DEP Low
2 ROP Based 733.4 KB 1 + ROP gadget Medium
3 ROP + Guard 734.6 KB 2 + Guard High

Fig. 7: Run Time Performance Evaluation

security measures will be of high magnitude sometimes
not even commensurate with the returns he will get from
tampering with the software. This will serve to deter the
attackers from mounting an exploit and tampering the code.

2) Runtime analysis: Table 3 shows statistics of security
level. If a binary is run without any security it only uses
system provided security like ASLR, DEP etc. then adver-
sary easily can tamper it [15]. Now if we apply only ROP
gadget based security it provides self code verification and
we provide another layer of defence by using code check-
summing guard. This level of security ensures code self-
verification and integrity.
If an adversary tries to analyse the code using compiler
utilities like gcc, he would not be able to use them owing
to our utilization of the anti-debug checker module. At run
time, if adversary tries to add some code then our self-
verification technique shows segmentation fault. Adversary
may also try to modify code in runtime. Due to anti-debug
checker adversary will not be able to execute gdb also, and
hence the run-time exploitation is not possible.

C. Impacts on Program Size

In our experiment we added minimum number of guards
and a small verification function in original C program that
did not increase the size of file. The modified file is almost
same in size as compared to the original file. We believe
that the issue of storage space does not pose a problem.

We use Intel Vtune to analyse the CPU performance. Fig.7
plots time taken in seconds by a program without ROP and
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a program with ROP against various times, i.e., user, system
and real-time. Spin and overhead time adds to the idle CPU
usage value. This result also shows that our method will not
affect CPU performance. It will increase security, and hence,
this new method will be effective for non-cryptic workload
also.

VI. FUTURE SCOPE AND CONCLUSIONS

We introduced novel code protection from exploitation us-
ing Return Oriented Programming and check-summing tech-
niques. Our approach can protect non-deterministic code.
The performance overhead of our approach can be confined
to the verification code which is separate from the protected
code. Thus, performance sensitive code is protectable with-
out any slowdown, confining the performance penalty to
other code.

In future we plan to create guards and ROP chains auto-
matically. Also, we try to apply this technique on different
architectures like MIPs, ARM etc.
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