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Abstract
Fuzzing is an effective technique for discovering software vulner-

abilities by generating random test inputs and executing them

against the target program. However, fuzzing large and complex

programs remains challenging due to difficulties in uncovering

deeply hidden vulnerabilities. This paper addresses the limitations

of existing coverage-guided fuzzers, focusing on the scheduler and

mutator components. Existing schedulers suffer from information

sparsity and the inability to handle fine-grained feedback metrics.

The mutators are agnostic of target program branches, leading to

wasted computation and slower coverage exploration.

To overcome these issues, we propose an end-to-end online

stochastic control formulation for coverage-guided fuzzing. Our

approach incorporates a novel scheduler and custom mutator that

can adapt to branch logic, maximizing aggregate edge coverage

achieved over multiple stages. The scheduler utilizes fine-grained

branch distance measures to identify frontier branches, where new

coverage is likely to be achieved. The mutator leverages branch dis-

tance information to perform efficient and targeted seed mutations,

leading to robust progress with minimal overhead.

We present FOX, a proof-of-concept implementation of our

control-theoretic approach, and compare it to industry-standard

coverage-guided fuzzers. 6 CPU-years of extensive evaluations on

the FuzzBench dataset and complex real-world programs (a total of

38 test programs) demonstrate that FOX outperforms existing state-

of-the-art fuzzers, achieving average coverage improvements up to

26.45% in real-world standalone programs and 6.59% in FuzzBench

programs over the state-of-the-art AFL++. In addition, it uncov-

ers 20 unique bugs in popular real-world applications, including

eight that are previously unknown, showcasing real-world security

impact.
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1 Introduction
Fuzzing is a popular technique for discovering software vulnerabil-

ities by generating random test inputs and executing them against

the target program [13, 15, 24, 49]. While it has been successful in

detecting security vulnerabilities in real-world programs [10, 11],

fuzzing large and complex programs remains challenging due to

difficulties in uncovering deeply hidden vulnerabilities.

This paper focuses on coverage-guided fuzzers, the prevailing

approach to fuzzing, aiming to maximize edge coverage within a

given time budget. These fuzzers maintain a list of seed inputs and

select inputs for further mutation at each stage. They consist of

two main components: a scheduler (choosing inputs for mutation)

and mutators (modifying the chosen input). The goal is to generate

inputs that explore new edges for better coverage. Most existing

fuzzers use randomized mutations to adapt to different branches in

the target program. The effectiveness of a fuzzer, therefore, depends

on two factors: (i) the mutator’s likelihood to generate new inputs

achieving new coverage given a specific seed input, and (ii) the

scheduler’s ability to identify seeds that, when mutated, are likely

to trigger new edges.

Limitations of Existing Approaches. We identify the following

main drawbacks in the existing design of scheduler and mutator

components for coverage-guided fuzzing. Firstly, the schedulers use

coarse-grained feedback to select candidates for further mutation.

They rely on seeds that have previously resulted in coverage gain

whenmutated. However, this approach suffers from serious sparsity

of information, as coverage-increasing inputs become increasingly
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Figure 1: Workflow of FOX

rare as the fuzzing campaign progresses [45]. Consequently, the

scheduler often degenerates into a round-robin approach. Attempt-

ing to use finer-grained data-flow-guided feedback metrics [31, 41]

to address this issue can easily lead to an explosion in the seed cor-

pus of the fuzzing scheduler [54]. Secondly, the current mutators

are agnostic of the target program branches. They perform random

mutations independently of the branch logic, with the hope of in-

creasing coverage. As a result, these existing mutators waste compu-

tation while attempting to generate coverage-increasing mutations,

leading to slower coverage exploration. Techniques using taint

tracking to customize mutation operations for different branches

tend to incur prohibitively high overhead [55]. Furthermore, despite

the shared overarching goal of achieving new coverage, current

fuzzers often treat the scheduler and mutator as separate entities

with distinct objectives and little information exchange.

Our Approach. In this paper, we tackle these issues by presenting

an end-to-end online stochastic control formulation for coverage-

guided fuzzing, which encompasses both the scheduler and mutator

components. In this framework, the stochastic mutator and target

program represent the dynamics of the system, where the sched-

uler makes probabilistic online control decisions about which seed

to mutate from the corpus, representing the fuzzer’s state. Each

scheduling step constitutes a stage of this control process, and our

objective is to maximize the sum of expected coverage gain across

multiple stages subject to a time budget constraint. To solve this

problem, we introduce a novel scheduler and mutator that can effi-

ciently adapt to branch logic, integrating them into a comprehensive

control framework that can benefit from both the scheduler’s multi-

seed view and the mutator’s seed- and branch-specific behavior.

The workflow of FOX is shown in Figure 1.

Scheduler. To address the lack of meaningful information for the

scheduler when mutators fail to achieve new coverage, we use fine-

grained branch distance measures (see §2.3), indicating how close

the current seed is to flipping a branch. Specifically, flipping indi-

cates generating and executing a seed that can exercise alternative

outgoing control-flow branches from the parent node of a previ-

ously seen branch. To avoid state space explosion while leveraging

finer-grained feedback metrics, we apply the fine-grained feedback

measure only to frontier branches — branches that have at least one

unexplored outgoing control-flow edge from their corresponding

parent node in the control-flow graph. Thus, our control problem

is simplified to maximizing coverage by flipping frontier branches

at each stage (see Section 2 for a formal definition).

Our approach estimates the potential for new coverage of a seed

based on the potential for a branch distance decrease at frontier

nodes. New coverage implies a decrease in branch distance, though

a branch distance decrease does not necessarily imply new cov-

erage. Since branch distance decreases are much more frequent,

we use them as a reliable proxy and an upper bound on the prob-

ability of achieving new coverage. The scheduler keeps track of

the branch distance decreases, estimating the probability of a seed,

when mutated, to flip a frontier branch with minimal additional

overhead. We present a greedy online scheduling algorithm that

leverages branch-distance-based probabilistic estimates of expected

coverage gain to make provably optimal decisions among all possi-

ble scheduling algorithms with access to the same estimates of the

probability of achieving new coverage.

Mutator. In order to overcome the limitations of randomized mu-

tators in adapting to branch logic, we present a new mutator that

utilizes branch distance information for each frontier branch. Our

mutator has two components: local search and Newton’s method.

First, we use local search to identify new seeds reaching each fron-

tier branch and efficiently learn an approximate linear lower bound

of the branch function. Next, we generate new seeds based on New-

ton’s method of root finding, with a high probability of flipping

the target frontier branch. This approach leads to fast and robust

progress for a wide range of branch distance functions, while main-

taining minimal overhead compared to more expensive techniques

like byte-level taint inference [13, 26, 37].

Our design not only results in coverage gains but also provides ac-

tionable fine-grained, frontier-branch-specific feedback for fuzzing

developers and users to debug and optimize their setup, going be-

yond the current work on fuzzing interpretability [3]. For instance,

our scheduler can estimate the different sources of difficulty in

flipping frontier branches, including the error in the linear approxi-

mation of a branch and the rate of reachable samples to a branch.

Result Summary. To evaluate the effectiveness of our control-

theoretic approach to fuzzing, we implement FOX and compare it

against the leading state-of-the-art fuzzers: AFL++, AFL++ with

cmplog, AFL++ with cmplog and dictonary. We perform an exten-

sive evaluation involving over 6 CPU-years of computation of the

coverage achieved by FOX and the other evaluation candidates

on a set of 38 programs (23 from the FuzzBench dataset [43] as

well as 15 from a manually curated dataset of complex real-world

programs). FOX outperforms all existing state-of-the-art fuzzers on

standalone programs, achieving average improvements as high as

26.45% compared to AFL++, 16.98% compared to AFL++ with cm-

plog, and 12.90% compared to AFL++ with cmplog and dictionary.

The same performance trend is reflected in the FuzzBench dataset

where we see FOX gain a coverage improvement up to 6.59% over

AFL++ including an average performance improvement of 3.50%

when compared across all fuzzers. In addition, we evaluated the bug

discovery capabilities of FOX, comparing its performance against

the other candidate fuzzers on Magma dataset [29] with ground-

truth bugs as well as its ability to find bugs in the wild for real-world

applications. On the Magma dataset, FOX uncovers up to 16.67%

more ground-truth bugs compared to other fuzzers. Finally, FOX
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also uncovered 20 unique bugs as part of its in-the-wild evaluation

of real-world programs, of which eight were previously unknown

and have been responsibly disclosed to the affected vendors.

In summary, we make the following contributions:

• Formulating fuzzing as an online stochastic control prob-

lem, presenting a unified framework for reasoning about the

scheduler and mutator components in tandem.

• Performing coverage exploration by scheduling frontier branches,

drastically reducing the scheduler’s control space while em-

ploying finer-grained feedback in the form of branch dis-

tance.

• Designing branch-aware mutators using optimization-

oriented strategies to gain new coverage and provide inter-

pretable feedback about frontier branches’ characteristics.

• Introducing FOX as a proof-of-concept of our stochastic-

control-guided approach, outperforming existing state-of-

the-art fuzzers (AFL++, AFL++ cmplog, AFL++ cmplog with

dictionary) on FuzzBench as well as a set of complex real-

world programs, achieving coverage improvements up to

26.45%.

• Releasing FOX at https://github.com/FOX-Fuzz/FOX to fos-

ter further research and collaboration within the research

community.

2 Theory
2.1 Problem Definition
Coverage-guided mutation-based fuzzing can be defined as an on-

line optimization problem aiming to maximize the edge coverage

of a target program. Let us begin with an arbitrary target program

denoted as 𝑃 , which can take inputs up to length𝑀 bits. A fuzzer

maintains a seed corpus of inputs and iteratively mutates these

seeds to generate new inputs. These mutated inputs are then exe-

cuted by the target program to determine the coverage achieved

on program edges.

At each fuzzing iteration 𝑖 , the fuzzer selects a seed 𝑆𝑖 [𝑢𝑖 ] from
the current seed corpus 𝑆𝑖 , where 𝑢𝑖 represents the index of the

chosen seed. Next, the fuzzer applies the mutator𝑚𝑢𝑡 (·) to 𝑆𝑖 [𝑢𝑖 ],
generating a new input x. The target program is then executed

with this mutated input, and the achieved edge coverage increase

is calculated using the function 𝑐𝑜𝑣 (x, 𝑆𝑖 ) over the mutated input x
and the seed corpus 𝑆𝑖 .

Based on the coverage outcome, the fuzzer decides whether/how

to update the seed corpus 𝑆𝑖 to 𝑆𝑖+1. Typically, popular fuzzers add
x to 𝑆𝑖 if it leads to a coverage increase.

The objective is to maximize the accumulated coverage across 𝐾

stages. This can be formally represented as follows:

Maximize
𝐾∑︁
𝑖=1

[𝑐𝑜𝑣 (𝑚𝑢𝑡 (𝑆𝑖 [𝑢𝑖 ]), 𝑆𝑖 )] (1)

Here, 𝑆𝑖 [𝑢𝑖 ] denotes the seed selected for mutation at stage 𝑖 ,

and 𝑐𝑜𝑣 (𝑚𝑢𝑡 (𝑆𝑖 [𝑢𝑖 ]), 𝑆𝑖 ) represents the coverage achieved after

executing the mutated input on the target program.

The optimal strategy for the fuzzer to achieve the highest cov-

erage for a given target program is to find the sequence of indices

𝑢𝑖 into the seed corpus 𝑆𝑖 that maximizes the objective function

representing the accumulated coverage across 𝐾 stages. This prob-

lem is an online optimization problem [28] because the fuzzer can

only observe the output of the 𝑐𝑜𝑣 function after applying the muta-

tion operation at each stage sequentially. In an online optimization

setting, the decision-maker (in this case, the fuzzer) must make

choices at each stage without complete knowledge of the objective

function’s values for future stages. The objective of the fuzzer is to

maximize the cumulative coverage over the sequence of stages, lead-

ing to an online optimization problem where the optimal sequence

of seed selections and mutations needs to be found to achieve the

highest coverage across the entire fuzzing process.

2.2 Fuzzing as Online Stochastic Control
One approach to addressing the online optimization problem de-

scribed above (Equation 1) is to formulate it as an optimal control

problem. This allows us to ground the development of fuzzing algo-

rithms on the rich theory of optimal control. In an optimal control

problem, the main goal is to find an optimal control strategy given

a state space and control space. In our fuzzing scenario, the state

space represents the state of the fuzzer at each stage, which is the

current seed corpus 𝑆𝑖 , and the control space corresponds to the

choices the fuzzer makes, such as selecting a seed for mutation.

However, the dynamics of the target program are not fully known

in advance due to the online nature of the problem. The system

dynamics are revealed locally based on the actions selected by the

fuzzer’s mutation and control process. In essence, the fuzzer makes

decisions at each stage based on the current seed corpus 𝑆𝑖 , and

then the program’s behavior and response become apparent when

the chosen mutated input is executed.

Moreover, most existing fuzzers employ randomized mutations

to adaptively explore diverse program behaviors and various branch

types. Since the input space of a fuzzer is often vast and complex, a

randomized mutation approach avoids introducing specific biases

toward particular inputs. Instead, it allows the fuzzer to explore a

wide range of possibilities.

Due to both the mutator performing randomized mutations and

the uncertainty in the target program’s behavior, the system dy-

namic is best represented as a stochastic process. As a result, the

problem at hand is considered a stochastic optimal control problem.

In this context, the fuzzer aims to find an optimal mutation strat-

egy that maximizes coverage despite the stochastic nature of the

system dynamics. This probabilistic optimization approach allows

the fuzzer to efficiently explore the input space and achieve effec-

tive generalization, ultimately improving coverage across diverse

programs and input structures.

Formulating fuzzing as a stochastic control problem involves

five key components as described below:

State Space. The state space encompasses all possible configura-

tions or states of the system at any given stage. In the context of

fuzzing, it includes information about the current seed corpus at

stage 𝑖 , denoted as 𝑆𝑖 .

Control Space. The control space encompasses all the possible

decisions that can influence the system’s behavior. In the context

of fuzzing, it refers to the choice of which seed, denoted with index

𝑢𝑖 in the seed corpus 𝑆𝑖 (1 ≤ 𝑢𝑖 ≤ |𝑆𝑖 |), to select at each stage.

https://github.com/FOX-Fuzz/FOX
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Fuzzer Dynamics. The dynamics summarize how the system

evolves over stages based on the chosen actions and the current

state. In fuzzing, it is characterized by three main steps in the mu-

tation stage:

First, the fuzzer takes the seed corpus 𝑆𝑖 and selects a seed 𝑆𝑖 [𝑢𝑖 ]
based on the control strategy. It then generates a new input x
by applying the mutator𝑚𝑢𝑡 (·) to the selected seed 𝑆𝑖 [𝑢𝑖 ]. Next,
the fuzzer executes the generated mutant on the target program,

resulting in a coverage value denoted by 𝑔𝑖 . This coverage value

represents the extent of coverage achieved for the specific mutated

input. Finally, the fuzzer updates the seed corpus (i.e., state) 𝑆𝑖 to

create amodified seed corpus 𝑆𝑖+1 based on the coverage result. This
step involves incorporating the new input and its corresponding

coverage into the seed corpus for the subsequent stages.

As mentioned earlier, the dynamics of the fuzzing process are

stochastic due to the random nature of the mutator. Formally, we

define the dynamics steps below:

x←𝑚𝑢𝑡 (𝑆𝑖 [𝑢𝑖 ])
𝑔𝑖 = E [𝑐𝑜𝑣 (x, 𝑆𝑖 )]

𝑆𝑖+1 ← 𝑢𝑝𝑑𝑎𝑡𝑒 (𝑆𝑖 , x, 𝑔𝑖 )
(2)

Objective Function. The objective function defines the goal or

desired outcome of the system. In the context of fuzzing, it aims to

maximize the expected total coverage gain across 𝐾 stages:

Maximize
𝐾∑︁
𝑖=1

𝑔𝑖 (3)

Constraints. These represent restrictions that need to be satisfied

by the system. Fuzzing is typically subject to resource constraints

like that the total execution time (i.e., the sum of execution time

for each stage 𝑡𝑖 ) must not go over the total time budget 𝑇 of the

fuzzing campaign:

𝐾∑︁
𝑖=1

𝑡𝑖 ≤ 𝑇 (4)

2.3 Decomposing 𝑐𝑜𝑣 (x, 𝑆𝑖)
The coverage function depends on both the mutated input x and

the current set of seen edges based on 𝑆𝑖 . Formally, 𝑐𝑜𝑣 (x, 𝑆𝑖 ) can
be modeled as a random variable that counts howmany unseen (i.e.,

not reached before by any input) edges at stage 𝑖 have been flipped

by the randomized mutation operation performed on x. To achieve

this, we use indicator functions 𝑐𝑜𝑣𝑏 (x, 𝑆𝑖 ), each corresponding to

an unseen branch 𝑏 ∈ 𝐵𝑖 , where 𝐵𝑖 represents the set of unseen
branches at stage 𝑖 . These indicator functions are modeled as ran-

dom variables taking values of 0 or 1, indicating whether the unseen

branch 𝑏 is flipped or not. Utilizing the linearity of expectation, we

can express the expectation of the 𝑐𝑜𝑣 function in the following

manner:

𝑔𝑖 =
∑︁
𝑏∈𝐵𝑖
E [𝑐𝑜𝑣𝑏 (x, 𝑆𝑖 )] (5)

Most modern fuzzers employ customized randomized mutators,

denoted as𝑚𝑢𝑡 (·), which essentially generate new inputs drawn

from an unknown distribution specific to the fuzzer. In our analysis,

we assume that the inputs generated by the mutator have a fixed,

yet unknown, probability of flipping a given unseen branch 𝑏 (de-

noted as Pr(𝑏 flips | 𝑚𝑢𝑡 (𝑆𝑖 [𝑢𝑖 ]))). Furthermore, different program

inputs generated by𝑚𝑢𝑡 (·) for different seeds are independently
distributed. Popular existing fuzzers like AFL++ satisfy these as-

sumptions. Mutators such as havoc randomly alter inputs without

targeting specific branches, thus maintaining an equal chance of

flipping any branch for a given seed. Likewise, the creation of one

input does not influence the creation of another unless a branch is

flipped, resulting in coverage gain.

As a result of these assumptions, we can model the coverage of a

specific branch 𝑏, denoted as 𝑐𝑜𝑣𝑏 (x, 𝑆𝑖 ), where x←𝑚𝑢𝑡 (𝑆𝑖 [𝑢𝑖 ]),
as a random variable 𝑋 following a Bernoulli distribution with the

probability of success given by Pr(𝑏 flips | 𝑚𝑢𝑡 (𝑆𝑖 [𝑢𝑖 ])).:

𝑔𝑖 =
∑︁
𝑏∈𝐵𝑖

Pr(𝑏 flips | 𝑚𝑢𝑡 (𝑆𝑖 [𝑢𝑖 ])) (6)

To maximize the expected coverage gain in stage 𝑖 , we need a

good estimate for Pr(𝑏 flips | 𝑚𝑢𝑡 (𝑆𝑖 [𝑢𝑖 ])). However, the conven-
tional approach of observing the frequency with which𝑚𝑢𝑡 (𝑆𝑖 [𝑢𝑖 ])
flips the branch does not work for our task. This is because using

this approach, the probability for not-yet-flipped branches will

be zero, whereas this probability is irrelevant to us once we have

flipped a branch.

To address this issue, we utilize the concept of frontier nodes

which is closely related to the concept of horizon nodes introduced

by She et al. [49] in the context of graph-centrality-based seed

scheduling. Consider a control flow graph (CFG) as 𝐺 = (𝑁, 𝐸),
where 𝑁 denotes a set of basic blocks and 𝐸 denotes control flow

transitions between these blocks. Given a seed corpus 𝑆 , we can

classify 𝑁 into a set of unvisited nodes𝑈 and another set of visited

nodes 𝑉 based on the code coverage information (𝑆.𝑐𝑜𝑣 indicates

whether a node 𝑛 has been reached by the seed corpus 𝑆):

𝑉 = {𝑛 |𝑛 ∈ 𝑁, 𝑆.𝑐𝑜𝑣 (𝑛) = 1}
𝑈 = {𝑛 |𝑛 ∈ 𝑁, 𝑆.𝑐𝑜𝑣 (𝑛) = 0} (7)

Unlike She et al. [49] who identify horizon nodes as a set of unvisited

nodes lying at the boundary between visited and unvisited code

regions, we define frontier nodes as a set of visited nodes that

dominate all the unvisited nodes:

𝐹 = {𝑣 | (𝑣,𝑢) ∈ 𝐸, 𝑣 ∈ 𝑉 ,𝑢 ∈ 𝑈 } (8)

For the purposes of using frontier nodes to understand coverage,

we focus solely on the subset of frontier nodes containing control

instructions that result in conditional jumps. Therefore, in our

setting, each frontier node is associated with a conditional jump,

i.e., a frontier branch. Frontier branches at stage 𝑖 are denoted by

𝐹𝐵𝑖 . We assume that each frontier branch 𝑏 at stage 𝑖 involves the

evaluation of a predicate𝑄𝑏 . The predicate evaluates to true or false

based on a relation 𝑓𝑏 (x) 𝑅𝑏 0, where 𝑅𝑏 represents the condition

type (<, ≤, >, ≥, =, ≠) and x indicates a test input. Flipping a
branch indicates finding x′ such that 𝑄𝑏 (𝑓𝑏 (x′)) ≠ 𝑄𝑏 (𝑓𝑏 (x)). As
part of fuzzing instrumentation added to the target program, we

assume that our fuzzer has access to the 2-tuple (𝑄𝑏 (𝑓𝑏 (x)),Rb)
for each frontier branch 𝑏 ∈ 𝐹𝐵𝑖 . With this information, we define

branch distance function 𝛿𝑏 as a linear or piece-wise linear function

of 𝑓𝑏 (x) for each frontier branch 𝑏 as given in Table 1.

Consider a simple example: a branch 𝑏 if (𝑥 ≤ 15), meaning

𝑓𝑏 (𝑥) = 𝑥 − 15, with a reaching input 𝑥 = 5. The branch is frontier

because we have not found an input that exceeds 15. We aim to
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define a linear branch distance function that outputs how close

𝑥 is to exceeding 15. For an input 𝑥 = 5, 𝑄𝑏 (𝑓𝑏 (𝑥)) = 𝑡𝑟𝑢𝑒 (i.e.,

𝑥 ≤ 15 is true) and 𝑅𝑏 = ≤. Consequently, according to Table 1, the

employed function is 1 − 𝑓𝑏 (𝑥) or 16 − 𝑥 . Finding the root input of

16 − 𝑥 , i.e. 𝑥 = 16, will flip the frontier branch 𝑏.

Table 1: Branch distance function 𝛿𝑏 for a frontier branch
𝑏 ∈ 𝐹𝐵𝑖 based on the 2-tuple (𝑄𝑏 (𝑓𝑏 (x)), 𝑅𝑏 ). 2-tuplesmapping
to the same branch distance function are grouped together.

𝑄𝑏 (𝑓𝑏 (x)) 𝑅𝑏 𝛿𝑏 (x)
false <

𝑓𝑏 (x) − 1
true ≥
false ≤

𝑓𝑏 (x)
true >

false >
1 − 𝑓𝑏 (x)

true ≤
false ≥ −𝑓𝑏 (x)
true <

false = |𝑓𝑏 (x) |
true ≠

false ≠
1 − |𝑓𝑏 (x) |

true =

Due to the nature of existing mutators as discussed above, we fur-

ther assume that the program inputs generated by the mutator have

an unknown but fixed probability of decreasing branch distance

𝛿𝑏 for a given unseen branch 𝑏 (Pr(𝛿𝑏 decreases | 𝑚𝑢𝑡 (𝑆𝑖 [𝑢𝑖 ]))).
Therefore, we canmodel the event𝛿𝑏 (x) decreases, x←𝑚𝑢𝑡 (𝑆𝑖 [𝑢𝑖 ])
as a randomvariable𝑌 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (Pr(𝛿𝑏 decreases | 𝑚𝑢𝑡 (𝑆𝑖 [𝑢𝑖 ]))).
While it is evident that 𝑋 implies 𝑌 (every flip always involves a

branch distance decrease), it is not necessarily true that 𝑌 implies𝑋

(not every branch distance decrease involves a flip). Hence, we find

that: Pr(𝑏 flips | 𝑚𝑢𝑡 (𝑆𝑖 [𝑢𝑖 ])) ≤ Pr(𝛿𝑏 decreases | 𝑚𝑢𝑡 (𝑆𝑖 [𝑢𝑖 ])).
Therefore, optimizing based on 𝑝′ serves as an approximation to

optimizing based on 𝑝 , where 𝑝′ and 𝑝 are the probabilities of 𝛿𝑏
decreasing and 𝑏 flipping, respectively.

Naturally, 𝑝′ cannot be used to reason about unseen branches,

i.e., branches that have not been reached yet, since we lack branch

distance 𝛿𝑏 information for them. Thus, we focus solely on frontier

branches 𝐹𝐵𝑖 — branches that we have reached but not yet flipped.

𝑔𝑖 ≈
∑︁
𝑏∈𝐹𝐵𝑖

Pr(𝛿𝑏 decreases | 𝑚𝑢𝑡 (𝑆𝑖 [𝑢𝑖 ])) (9)

To optimize Equation 9, we use a two-pronged approach. First,

we choose to schedule 𝑆𝑖 [𝑢𝑖 ] for each stage 𝑖 such that it maximizes

the above expression. Second, assuming that most frontier branches

in a program are approximately linear in the neighborhood of each

seed in 𝑆𝑖 , we introduce a custom mutation operation such that the

Pr(𝛿𝑏 decreases | 𝑚𝑢𝑡 (𝑆𝑖 [𝑢𝑖 ])) increases for these branches.

2.4 Fuzzing Algorithm
2.4.1 Optimal-control-based Scheduler. We solve the following op-

timization problem using a greedy approach.

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒

𝐾∑︁
𝑖=1

∑︁
𝑏∈𝐹𝐵𝑖

Pr(𝛿𝑏 decreases | 𝑚𝑢𝑡 (𝑆𝑖 [𝑢𝑖 ])) (10)

To optimize each stage 𝑖 efficiently, we aim to select a seed 𝑆𝑖 [𝑢𝑖 ]
that maximizes the inner sum in Equation 10. Given that many

of these probabilities are very small (0 or close to 0), we can ap-

proximate the inner sum by taking the maximum term instead.

This approximation is not only effective but also computationally

inexpensive in a streaming setting.

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒

𝐾∑︁
𝑖=1

max

𝑏∈𝐹𝐵𝑖
Pr(𝛿𝑏 decreases | 𝑚𝑢𝑡 (𝑆𝑖 [𝑢𝑖 ])) (11)

We can tackle this problem in two steps: (a) for each branch 𝑏,

find a seed 𝑆𝑖 [𝑢𝑖 ] that maximizes Pr(𝛿𝑏 decreases | mut(𝑆𝑖 [𝑢𝑖 ]))
and (b) select the frontier branch 𝑏 ∈ 𝐹𝐵𝑖 with the maximum

Pr(𝛿𝑏 decreases | mut(𝑆𝑖 [𝑢𝑖 ])). For step (a), we maintain a map-

ping 𝑇𝑆 where each frontier branch 𝑏 at stage 𝑖 corresponds to

a seed 𝑇𝑆𝑖 [𝑏] .𝑠 (along with the corresponding branch distance

𝑇𝑆𝑖 [𝑏] .𝑑) that achieves the lowest branch distance across all inputs

reaching that frontier branch so far. Subsequently, scheduling can

be simplified to step (b) as shown below.

𝑢𝑖+1 = 𝑇𝑆𝑖 [argmax

𝑏∈𝐹𝐵𝑖
Pr(𝛿𝑏 < 𝑇𝑆𝑖 [𝑏] .𝑑 | 𝑚𝑢𝑡 (𝑇𝑆𝑖 [𝑏] .𝑠)]

𝑇𝑆𝑖+1 [𝑏] .𝑠 = argmin

𝑠∈𝑆𝑖+1
𝛿𝑏 (𝑠)

𝑇𝑆𝑖+1 [𝑏] .𝑑 = min

𝑠∈𝑆𝑖+1
𝛿𝑏 (𝑠)

(12)

To estimate the branch distance decrease probability for a fron-

tier branch, we measure the number of total executions of inputs

that reach the frontier branch, denoted as 𝑡ℎ(·), and the total num-

ber of inputs that lower the global minimum branch distance for

the frontier branch, denoted as 𝑝ℎ(·). To incorporate the time con-

straint, we further refine the probability estimate by replacing the

number of hits with time. Specifically, we track the total time spent

executing inputs that reach a frontier branch 𝑡𝑡 (·) and the total time

spent executing inputs lowering the branch distance for a frontier

branch 𝑝𝑡 (·). Additionally, to prevent frequent scheduling of the

same seeds, we introduce a discount factor 𝜆𝑏 based on how many

times the seed mapped to the frontier branch 𝑏 was scheduled. The

final probability estimate is then given by:

Pr(𝛿𝑏 decreases) = 𝜆𝑏
𝑝𝑡 (𝑏)
𝑡𝑡 (𝑏) (13)

Theorem 1. Given a fixed branch flip probability before each
stage 𝑖 , a greedy schedule that chooses 𝑢𝑖+1 such that it maximizes
the expected coverage gain at each stage 𝑖 of the problem described
by Equation 3 is optimal.

A proof of the theorem can be found in §A.1.

2.4.2 OptimizingMutation . In our approach, the primary objective

of the mutation stage is to enhance the likelihood of reducing

branch distances for all frontier branches at any given stage. To
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achieve this, we begin by creating a locally correct linear under-

approximator through local search, essentially a subgradient. If

the slope of this approximator is non-zero (indicating a decreasing

direction), we proceed with the Newton’s method.

Local Search. The central idea is to construct a local linear ap-

proximation of the branch distance function, denoted as 𝛿𝑏 (x), for
a given branch 𝑏. This local approximation should act as a lower

bound on 𝛿𝑏 within a neighborhood 𝑁 (x) surrounding the point x.
The local neighborhood depends on the number of bytes modified

by the mutator in stage 𝑖 . Unlike aiming to minimize the average

error over the points within the neighborhood, we aim to mini-

mize the under-approximation error. This choice ensures that the

Newton’s method remains stable.

To achieve this, we seek a vector 𝑔 that satisfies the condition

∀x′ ∈ 𝑁 (x) : 𝑔𝑇 · (x′ − x) ≤ 𝛿𝑏 (x′) − 𝛿𝑏 (x). To approximate 𝑔, we

resort to a randomized local search, generating a fixed-size sample

of program inputs x′ ∈ 𝑁 (x) using𝑚𝑢𝑡 (·). We estimate the value of

𝑔 by selecting 𝑔 = argmax𝑔′ ∥𝑔′∥1, 𝑔′ = (𝛿𝑏 (x′) −𝛿𝑏 (x)) ⊘ (x′ − x),
where ⊘ indicates element-wise division.

The success of local search hinges on finding the right balance

between accuracy and speed. A large stack of havoc mutations

leads to sampling over a vast neighborhood 𝑁 (x), rendering an ap-

proximation imprecise. Consequently, by fine-tuning the mutation

stack we can constrain the neighborhood in a manner that allows

for relatively more precise approximations. Details pertaining to

this fine-tuning of the mutator stack as implemented in FOX are

discussed in §3.4.

Newton’s Method. If we obtain a valid 𝑔 (i.e., non-zero norm) in

the local search, we utilize it to perform the Newton’s method along

the direction of 𝑔 and identify the point at which the branch flips.

Considering that we want to find an x such that 𝛿𝑏 (x) takes a value
of 0 and flips the branch, we apply Newton’s method to generate

a new input x = x − 𝛿𝑏 (x) ⊘ 𝑔. If the underlying function 𝛿𝑏 (x)
is linear and the branch is feasible, this step will cause the branch

to flip. However, if 𝛿𝑏 (x) is not linear but a well-behaved convex

function, the step is still likely to decrease the branch distance [18].

3 Implementation
In this section, we present FOX, our proof-of-concept implemen-

tation for modeling fuzzing as an online stochastic control prob-

lem. Two essential primitives for FOX to implement its stochastic-

control-guided strategy include: (i) identifying frontier branches

and (ii) calculating branch distances. We first discuss how FOX

manages these two primitives, outlining the strategies employed

for efficient tracking. Subsequently, we discuss the implementa-

tion of scheduling and mutation strategies, as described formally

in §2. Finally, we explore how FOX leverages the semantics of

string comparisons to effectively flip frontier nodes involved in

such comparisons.

3.1 Frontier Branch Identification
FOX uses an intra-procedural control-flow graph (CFG) in conjunc-

tion with coverage information obtained during a fuzzing campaign

to identify frontier branches dynamically. FOX augments the AFL++

LLVM-based instrumentation pass to extract the intra-procedural

CFG for each function and embeds its metadata in the binary.

During a fuzzing campaign, we dynamically mark nodes in the

CFG as either visited or unvisited based on coverage information

as defined in Equation 7. Additionally, we update the list of frontier

nodes following Equation 8. We only focus on frontier branches, a

subset of frontier nodes where each node contains control instruc-

tions resulting in conditional jumps as outlined in §2.3.

3.2 Branch Distance Tracking
To facilitate the tracking of branch distances, we employ an LLVM

pass to hook every branch instruction and obtain its corresponding

branch distance. Specifically, we examine each conditional branch

instruction and check if its condition is computed from a CMP

instruction. If so, we insert a function immediately after the CMP

instruction to intercept its two operands, op1 and op2.
Integer Comparison. We compute the branch distance 𝛿𝑏 (x) =

op1 − op2.
String Comparison. We calculate an array of byte-wise branch

distances 𝑜𝑝1[𝑖] − 𝑜𝑝2[𝑖], 1 ≤ 𝑖 ≤ 𝑘 , where 𝑘 corresponds to

max(len(𝑠𝑡𝑟1), len(𝑠𝑡𝑟2)). We add zero-byte padding to ensure both

strings have the same length if one is shorter than the other.

During the dynamic execution of instrumented programs, our

hook functions compute the branch distances and save them into a

shared memory accessible by FOX. In real-world programs, there

can be many branch instructions, and invoking a hook function for

every branch instruction would cause significant runtime overhead

during dynamic execution. To reduce runtime overhead, we imple-

ment an adaptive switch for each hook function. The switch ensures

that the hook function is invoked only for frontier branches, not for

fully explored branches where all children nodes have been visited.

This way, we only incur a relatively small runtime overhead while

accurately computing branch distances for a small set of frontier

branches.

3.3 Scheduler
Our seed scheduler is implemented according to Algorithm 1, fol-

lowing the theoretical description provided in §2.4. We maintain

a mapping of seeds that achieve the lowest branch distance for

each frontier branch 𝑇𝑆 . This approach allows us to reason about

frontier branches rather than individual seeds, mitigating the target

explosion issue discussed by Mouret et al. [44].

We also keep counters for each frontier branch’s productive time

𝑃𝑇 and total time 𝑇𝑇 indexed by the branch’s unique CFG node

id. These counters, along with the mapping 𝑇𝑆 , get updated after

each program input execution. Before scheduling the next seed for

each stage 𝑖 , we compute the set of unvisited nodes𝑈𝑖 and the set

of frontier branches 𝐹𝐵𝑖 following the definitions in §2.3.

To compute the probability, we define the seed decay factor 𝜆𝑏
for each frontier branch 𝑏 as 𝑆𝐶 [𝑇𝑆 [𝑏.𝑖𝑑]], where 𝑆𝐶 is an array

of schedule counters indexed by the seed. Instead of directly com-

puting Pr(𝛿𝑏 decreases) for each frontier branch 𝑏, which might

suffer from numerical underflows if 𝑃𝑇 [𝑏.𝑖𝑑] is much smaller than

𝑇𝑇 [𝑏.𝑖𝑑] × 𝜆𝑏 , we compute the log-probability, as it avoids under-

flow issues.
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Algorithm 1 FOX scheduling algorithm for stage 𝑖

Input: 𝑃𝑇 ← CFG node id to productive time mapping

𝑇𝑇 ← CFG node id to total time mapping

𝑇𝑆 ← CFG node id to lowest branch distance seed

mapping

𝑆𝐶 ← Seed to number of scheduled count mapping

𝑏_𝑚𝑎𝑥 = ∅
𝑏_𝑚𝑎𝑥_𝑙𝑜𝑔𝑝𝑟𝑜𝑏 = ∞
for 𝑓 ∈ 𝐹𝐵𝑖 do

𝑏_𝑙𝑜𝑔𝑝𝑟𝑜𝑏 = log(𝑃𝑇 [𝑏]) − log(𝑇𝑇 [𝑏]) − log(𝑆𝐶 [𝑇𝑆 [𝑏] .𝑠])
if 𝑏_𝑚𝑎𝑥_𝑙𝑜𝑔𝑝𝑟𝑜𝑏 < 𝑏_𝑙𝑜𝑔𝑝𝑟𝑜𝑏 then

𝑏_𝑚𝑎𝑥 = 𝑏

𝑏_𝑚𝑎𝑥_𝑙𝑜𝑔𝑝𝑟𝑜𝑏 = 𝑏_𝑙𝑜𝑔𝑝𝑟𝑜𝑏

𝑢𝑖 = 𝑇𝑆 [𝑏_𝑚𝑎𝑥] .𝑠 ⊲ Schedule 𝑡𝑜𝑝_𝑠𝑒𝑒𝑑

𝑆𝐶 [𝑢𝑖 ] += 1

3.4 Mutator
Our mutator is implemented as shown in Algorithm 2, following the

theoretical description provided in §2.4.2. Given the scheduled seed

𝑆𝑖 [𝑢𝑖 ], we perform a randomized local search by sampling 𝑘 = 1024

program inputs x in the neighborhood 𝑁 (𝑆𝑖 [𝑢𝑖 ]). We empirically

determined this to be a good trade-off between the number of local

searches performed and Newton’s method steps taken. We utilize

AFL++ havoc mode stochastic mutator [5] for generating mutants,

with the number of random perturbations of the seed reduced to

keep them within the local neighborhood 𝑁 (𝑆𝑖 [𝑢𝑖 ]).
For each generated mutant x, we determine the subset of frontier

branches 𝐹𝐵𝑖,x ⊆ 𝐹𝐵𝑖 it reaches and compute the subgradient 𝑔x,𝑏
for each frontier branch 𝑏 ∈ 𝐹𝐵𝑖,x. We only consider a mutant for

the Newton’s method when the L1 norm of 𝑔x,𝑏 is greater than the

maximum subgradient value𝐺 [𝑏.𝑖𝑑] encountered so far. We then

apply Newton’s method to derive new inputs x∗ for the reached
frontier branches and execute them on the target program.

For frontier branches that rely on string comparisons, we have

taken a different approach. We treat string comparison functions

like strcmp and strncmp as sequences of multiple single-byte inte-

ger comparisons and solve them together using Newton’s method.

In contrast to the standard local search, for these functions, we

take an additional step to analyze the byte differences between the

seed 𝑆𝑖 [𝑢𝑖 ] and the mutant x to investigate the effect of a branch

distance 𝛿𝑏 change.

For each byte difference, we create a new program input by

applying only a single byte difference to the seed and then execute

this modified input to observe if it leads to a change in branch

distance. If we detect a branch distance change, we identify the

specified byte difference in the input as a hot (i.e., influential) byte,

indicating that it directly influences a particular byte in the string

comparison.

Our approach is designed to efficiently identify hot byte locations

without the need to probe all byte locations, which is done in many

previous works [13, 26, 38]. Once we find a hot byte location and

know the length of the string being compared, we infer all the other

hot byte locations by exploiting the fact that the hot bytes for a

string comparison are typically adjacent.

Algorithm 2 FOX mutator

Input: 𝛿 ← branch distance function for each frontier branch

𝑏

𝑆𝑖 ← Seed corpus

𝑢𝑖 ← Scheduled seed index

𝑘 ← Local search sample size

/* Perform local search with sample size k */

𝐺 = 𝑒𝑚𝑝𝑡𝑦_𝑚𝑎𝑝 ()
𝑋 = 𝑒𝑚𝑝𝑡𝑦_𝑚𝑎𝑝 ()
for 𝑘 iterations do

x =𝑚𝑢𝑡 (𝑆𝑖 [𝑢𝑖 ])
for 𝑓 ∈ 𝐹𝐵𝑖,x do

𝑔 = ComputeSubgradient(x, 𝑆𝑖 [𝑢𝑖 ], 𝛿𝑏 )
if 𝑏.𝑖𝑑 ∉ 𝑋 ∨ ∥𝑔∥1 > ∥𝐺 [𝑏.𝑖𝑑] ∥1 then

𝐺 [𝑏.𝑖𝑑] = 𝑔
𝑋 [𝑏.𝑖𝑑] = x

/* Apply Newton method to the top input for each reached fron-

tier branch */

for 𝑓 ∈ 𝐹𝐵𝑖 do
if 𝑏.𝑖𝑑 ∈ 𝑋 .𝑘𝑒𝑦𝑠 then

x∗ = ApplyNewtonMethod(𝑋 [𝑏.𝑖𝑑], 𝑆𝑖 [𝑢𝑖 ], 𝛿𝑏 )
𝑒𝑥𝑒𝑐 (x∗)

4 Evaluation
In this section, we aim to answer the following research questions:

• RQ1: Can FOX enable testing code that was previously un-

reachable by state-of-the-art fuzzers?

• RQ2: Does FOX improve fuzzers’ bug discovery capabilities?

• RQ3: How much control space reduction can FOX achieve

compared with existing fuzzers?

• RQ4: To what degree do the individual components of FOX

contribute to its overall performance?

• RQ5: Are there characteristics that make a branch amenable

to be solved by FOX?

We perform a thorough evaluation of FOX against AFL++ ver-

sion 4.09c (AFLPP) [24], which is the latest and most performant

version of a widely-recognized state-of-the-art fuzzer [14, 39], top-

ping the December 2023 FuzzBench report [2]. Additionally, we

extend our comparison to AFL++ in cmplog mode (AFLPP+C), an

industry implementation of REDQUEEN [13]. The AFLPP+C mode

intercepts the operands of CMP instructions and applies tailored

mutations. We specifically opt for this comparison because the mu-

tation technique of AFLPP+C most closely aligns with our own

mutator. The most potent setting of AFL++, widely embraced in

industrial environments [4] and academic fuzzing competitions [8],

is AFL++ with both cmplog and dictionary modes (AFLPP+CD).

The dictionarymode of AFL++ automatically generates a fuzzing

dictionary comprising string constants and integer constants ex-

tracted from the tested program. We also incorporate dictionaries

provided by FuzzBench. In addition to FOX alone, we evaluate FOX

with dictionary (FOX+D) to showcase its performance in a fair

comparison against AFLPP+CD.

Benchmarks. For our evaluation, we use all 23 binaries from the

FuzzBench dataset [43]. While FuzzBench is widely acknowledged
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Table 2: Studied programs in our evaluation.

Targets Version # Edge Targets Version # Edge

FuzzBench Targets systemd 07faa49 127,142

bloaty 52948c1 163,494 vorbis 84c0236 13,729

curl a20f74a 122,270 woff2 8109a2c 19,615

freetype cd02d35 34,951 zlib d71dc66 4,640

harfbuzz cb47dca 78,203 Standalone Targets
jsoncpp 8190e06 9,826 bsdtar libarchive-3.6.2 38,244

lcms f0d9632 14,693 exiv2 exiv2-0.28.0 122,543

libjpeg-t 3b19db4 17,789 ffmpeg ffmpeg-6.1 741,421

libpcap 17ff63e 15,344 jasper jasper-4.1.2 19,122

libpng cd0ea2a 9,038 nm-new binutils-2.34 54,848

libxml2 c7260a4 81,782 objdump binutils-2.34 80,582

libxslt 180cdb8 61,727 pdftotext xpdf-4.04 53,683

mbedtls 169d9e6 28,373 readelf binutils-2.34 32,249

openh264 045aeac 19,599 size binutils-2.34 54,348

openssl b0593c0 80,662 strip-new binutils-2.34 61,051

openthread 2550699 50,574 tcpdump tcpdump-4.99.4 47,476

proj4 a7482d3 267,147 tiff2pdf libtiff-v4.5.0 21,006

re2 b025c6a 15,179 tiff2ps libtiff-v4.5.0 17,861

sqlite3 c78cbf2 77,154 tiffcrop libtiff-v4.5.0 20,096

stb 5736b15 7,661 xmllint libxml2-2.9.14 85,412

as a standard in fuzzer evaluation [14, 17, 39, 46], we observe that

it suffers from two significant challenges: many project harnesses

are either very small (about a third of binaries have less than 20,000

edges, see Table 2) or feature numerous test cases, leading to an

early coverage saturation. This makes it challenging to differentiate

the performance differences among fuzzers. Notably, in SBFT23, a

FuzzBench-based competition, the mean coverage gain of the win-

ner HasteFuzz over AFLPP+CD was a modest 1.28% [9]. To address

these limitations and provide a more comprehensive assessment,

we further evaluate FOX on 15 real-world standalone programs.

These programs are carefully selected to represent the diversity

of our current software ecosystem, encompassing a broad range

of functionalities based on prior fuzzing literature [32, 49, 51, 57].

The details of these programs, along with their corresponding com-

mit/version, are presented in Table 2. Our results demonstrate that

the improvements achieved by FOX generalize beyond FuzzBench.

Experimental Setup. To answer RQ1, we evaluate the coverage
over time achieved by all fuzzers. For RQ2, we measure the number

of real bugs found in the standalone programs as well as the time

taken by the fuzzers to uncover the ground truth bugs present in the

MAGMA dataset [29]. For RQ3, we quantify the number of frontier

branches that FOX explores and compare it to the number of seeds

that AFL++, a conventional coverage-guided fuzzer, has to schedule.

To answer RQ4, we perform an ablation study by comparing the

coverage achieved by FOX against its variant with the optimized

mutator turned off. Finally, for RQ5, we propose and leverage a set

of quantitative metrics to interpret the performance of FOX.

We follow standard fuzzing evaluation practices [33] and run 10

campaigns of 24 hours each for each of the fuzzer-program pairs,

totaling over 5 CPU-years of evaluation. As part of our evaluation

on the FuzzBench dataset, we use the seeds as recommended in the

benchmark. For our standalone program evaluation, we provide one

well-formed seed for each of the targets sourced from the AFL++

repository [1]. To ensure fairness in our comparison, each fuzzer

is assigned a single core for each of their fuzzing campaigns. In

addition to standard summary statistics like mean and standard

deviation over our previously mentioned evaluation metrics, we

also perform the Mann-Whitney U test to ensure the observed

performance differences are statistically significant. Since this test

is non-parametric and therefore does not make any assumptions

about the underlying distribution, it has been widely used in the

software testing literature for testing randomized algorithms [12]

and fuzzers [33]. All our experiments are conducted on 10 machines

with Intel Xeon 2.00 GHz processors running Debian bullseye with

100 GB of RAM.

4.1 RQ1: Code Coverage
To answer RQ1, we evaluate the code coverage achieved by FOX

and compare it against the existing state-of-the-art fuzzers across 23

FuzzBench and 15 standalone targets on 10x24 hour campaigns. To

quantify the coverage achieved, we leverage the coverage collection

module of AFL++ that keeps track of the number of control-flow

edges exercised during the run using its coverage bitmap. In addi-

tion, we compare the mean coverage growth over time along with

their standard deviations to showcase the stability of our approach

in achieving coverage saturation. The Mann-Whitney U test scores

as well as the total number of executions statistics can be found in

the extended version of this work [50].

FuzzBench Targets. Across FuzzBench targets (see results in Ta-

ble 3), FOX demonstrates superior performance compared to AFL++

on 18 programs and AFLPP+C on 13 programs, achieving significant

mean coverage improvements. For instance, freetype shows up

to a 39.97% coverage increase over AFL++ and harfbuzz exhibits a

34.46% improvement over AFLPP+C. Similarly, FOX+D outperforms

AFLPP+CD on 15 programs, with notable gains of up to 21.17% on

harfbuzz. Coverage progression over time, comparing FOX and

FOX+D against other fuzzers, is detailed in the extended version of

our work [50].

FOX performs comparably or with statistically insignificant dif-

ferences to AFLPP+C on all remaining programs except for lcms,
openthread, proj4, and zlib. The challenges in these targets stem

from nested conditions and string comparisons with both operands

as variables, requiring FOX to further adapt the Newton’s method

to handle these complex branch types. While our current prototype

does not support them, it does not indicate a design limitation of

FOX; we plan to extend its capabilities in future iterations (discussed

further in §5).

With the dictionary, addressing the bottleneck of variable string

comparisons, FOX+D excels on larger FuzzBench programs with

quality seed corpora like harfbuzz and sqlite3. Particularly note-

worthy is its ability to manage control space more efficiently by

focusing solely on frontier branches, reducing redundancy and

maximizing time allocation. This effect is elaborated on in §4.3.

Even on relatively small programs, the Newton’s method mutator
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Figure 2: The arithmetic mean edge coverage for FOX and FOX+D against three other fuzzers running for 24 hours over ten runs on the
standalone programs. The error bars indicate one standard deviation.

allows FOX to flip branches that neither AFL++ nor AFLPP+C can

flip. We further discuss this ability in §4.5.

Standalone Targets. Comparison of mean coverage achieved by

FOX against AFL++, AFLPP+C, and AFLPP+CD is presented in

Table 4. Across standalone programs, FOX exhibits improvements

over AFL++ on all programs and surpasses AFLPP+C on 11 pro-

grams, achieving up to 26.45% more code coverage on average

across the standalone target set. One of the targets where we see

notable improvement is bsdtar, where FOX uncovers 97.25% and

80.61% more edges than AFL++ and AFLPP+C, respectively. Simi-

larly, FOX+D outperforms AFLPP+CD on 11 programs, including a

remarkable 49.04% improvement on ffmpeg.
Given the larger size of our selected standalone programs com-

pared to FuzzBench programs, tight integration of all fuzzer com-

ponents becomes critical. Through comprehensive control space

optimization, FOX effectively narrows the extensive control space

further by prioritizing branches suitable for flipping by the New-

ton’s method mutator, thereby enhancing coverage. In contrast,
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AFL++ relies solely on prior observed execution behavior to sched-

ule seeds, lacking guidance on which seeds would be most effective

in expanding coverage.

Result 1: FOX outperforms existing state-of-the-art fuzzers by

achieving up to 26.45% more coverage on average across the

standalone targets and up to 6.59% more coverage on average

across the FuzzBench targets.

Table 3: Mean edge coverage of FOX and FOX+D against three
fuzzers on 23 FuzzBench programs for 24 hours over 10 runs. We
mark the highest number in bold.

Targets FOX AFLPP AFLPP+C FOX+D AFLPP+CD

bloaty 8,646 8,507 8,627 8,514 8,684
curl 14,674 14,510 14,358 15,811 15,359

freetype 14,676 10,485 13,401 15,536 13,812

harfbuzz 37,155 37,276 27,633 37,103 30,621

jsoncpp 1,341 1,341 1,342 1,342 1,343
lcms 1,224 728 2,451 1,976 1,882

libjpeg-turbo 3,293 3,299 3,297 3,283 3,301
libpcap 2,366 43 1,848 3,074 2,690

libpng 2,846 2,697 2,838 2,848 2,836

libxml2 18,757 18,623 18,616 19,188 19,003

libxslt 12,184 11,959 11,909 12,424 12,358

mbedtls 3,987 3,722 3,839 4,037 3,834

openh264 13,780 13,733 13,630 13,826 13,662

openssl 11,128 11,102 11,114 11,127 10,902

openthread 4,827 4,686 5,140 4,822 5,041
proj4 26,603 26,703 28,904 32,995 32,494

re2 6,077 6,190 6,105 6,085 6,224
sqlite3 37,801 37,701 37,953 40,028 38,846

stb 4,332 4,042 4,180 4,440 4,249

systemd 3,836 3,781 3,856 3,835 3,857
vorbis 2,050 2,045 2,056 2,054 2,055
woff2 2,674 2,458 2,550 2,678 2,514

zlib 884 883 917 879 913

Mean gain 6.59% † 0.95% — 2.97 %

†We omit libpcap, as it would unrealistically skew this statistic in favor of FOX.

4.2 RQ2: Bug Discovery Effectiveness
In RQ2, we evaluate the bug discovery effectiveness of FOX com-

pared to other state-of-the-art fuzzers. Following Klees et al.’s rec-

ommendation [33] on using datasets with curated bugs, we tested

our fuzzer on the Magma dataset [29], comparing its performance

with other fuzzers. Additionally, to understand FOX’s real-world

bug detection capabilities, we evaluate it on an array of widely-used

standalone programs and libraries as specified in Table 2.

Curated Bug Dataset. Magma, a popular dataset in the fuzzing

community [31, 35], contains 21 programs from nine open-source

libraries with injected bugs. Our evaluation used 17 programs from

Table 4: Mean edge coverage of FOX and FOX+D against three
fuzzers on 15 standalone programs over 10 fuzzing campaigns run
for 24 hours each. We mark the highest number in bold.

Targets FOX AFLPP AFLPP+C FOX+D AFLPP+CD

bsdtar 8,893 4,508 4,924 9,194 7,811

exiv2 7,618 7,526 9,213 10,631 11,306
ffmpeg 33,544 29,268 25,147 33,821 22,692

jasper 3,811 3,400 3,890 4,257 3,870

nm-new 5,475 4,049 5,150 5,841 4,724

objdump 7,196 5,484 6,508 7,536 6,619

pdftotext 3,490 2,482 3,016 3,410 2,982

readelf 6,551 5,767 4,709 6,462 5,549

size 3,619 2,934 3,120 4,037 3,167

strip-new 7,330 5,718 6,297 7,930 6,306

tcpdump 16,996 13,399 17,601 17,524 17,841
tiff2pdf 8,061 7,731 7,803 7,974 7,830

tiff2ps 5,257 5,206 5,411 5,306 5,463
tiffcrop 9,298 8,763 8,933 9,254 8,835

xmllint 8,347 5,179 5,392 8,628 8,696

Mean gain 26.45% 16.98% — 12.90%

eight of these libraries: libpng, libtiff, libxml2, lua, openssl,
poppler, sqlite3, and libsndfile. php and its four fuzz drivers

were the only targets omitted from our evaluation since this target

encountered a compilation error during the final linking stage due

to dependency incompatibility. We compared FOX and FOX+Dwith

fuzzers like AFL++, AFLPP+C, and AFLPP+CD over five 24-hour

test campaigns for each test program, totalling over 1 CPU-year of

evaluation.

The results, detailed in Table 5, reveal that FOX was the top

performer in identifying unique bugs, outperforming or match-

ing other fuzzers in all the evaluated programs. We observe that

FOX’s superior performance is consistent with Bohme et al.’s [17]

prior observation about a strong link between coverage and bug

discovery.

As an interesting side note, we observe that fewer bugs were

triggered in lua and openssl compared to the other libraries. Upon

investigation, we found this was due to a limited number of de-

tectable ground-truth bugs in these programs. Specifically, lua
had only four injected bugs [6], and in openssl, only four have

been confirmed to be reachable [29], with several being provably

unreachable [7].

In-the-wild Bug Discovery. To evaluate FOX and FOX+D’s bug

discovery in real-world scenarios, we compared them with leading

fuzzers on a dataset of common programs and libraries (Table 2).

After ten 24-hour campaigns per target, we analyzed each crash

using standard deduplication practices [33]. Specifically, we employ

stack hashes of the crashing inputs to perform deduplication and

follow it up with manual analysis to validate deduplicated crashes

are unique.

Our findings (Table 6) show FOX and AFLPP+C discovering the

same number of bugs, both surpassing AFL++. FOX+D, however,
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uncovered 20 unique bugs, including 2 Use After Frees (CWE-416),

3 Invalid Frees (CWE-761), 12 Assertion Violations (CWE-617), 1 In-

finite Loop (CWE-835), and 2 Null Pointer Dereferences (CWE-476).

Remarkably, 10 of these bugs were exclusively found by FOX+D,

highlighting its superior bug discovery, especially given the heavily

fuzzed nature of these targets.

Another interesting observation is that FOX+D heavily outper-

forms all the other evaluation candidates, uncovering eleven more

bugs than the next best performing candidates (FOX, and AFLPP+C).

A key contributor to this performance difference is xpdf where

FOX+D uncovered eight more bugs compared to the other fuzzers.

Looking closer at the coverage results, we see that FOX+D uncov-

ers on average 21.93% more edges than the other fuzzers. In an

effort to understand if this coverage increase is correlated with

the bugs uncovered by FOX+D in xpdf, we measured Pearson’s

correlation coefficient between the edges uncovered and unique

crashes discovered across all the candidate fuzzers over the ten

24-hour campaigns. We observed a strong correlation with a 0.88

coefficient. This observation is in line with previous findings of a

strong correlation between edges uncovered and bugs discovered

while fuzzing [17].

Finally, a testament to FOX’s real-world impact is its identifica-

tion of 12 bugs in xpdf, a popular PDF library, with eight being

previously unknown as confirmed by the developers.

Table 5: Cumulative number of unique bugs triggered and reached
of FOX and FOX+D against three fuzzers in Magma programs for 24
hours over 5 runs. (triggered | reached)

Targets FOX AFLPP AFLPP+C FOX+D AFLPP+CD

tiffcp 6 | 11 5 | 8 6 | 9 7 | 10 6 | 8

tiff_read 4 | 7 3 | 5 3 | 5 3 | 7 3 | 6

libpng 3 | 6 1 | 6 3 | 6 3 | 6 3 | 6

xmllint 3 | 7 2 | 7 3 | 7 3 | 8 3 | 8

libxml2_xml 5 | 9 3 | 8 3 | 8 4 | 9 4 | 9

lua 2 | 4 1 | 2 1 | 2 1 | 2 1 | 2

asn1parse 0 | 1 0 | 1 0 | 1 0 | 1 0 | 1

bignum 0 | 1 0 | 1 0 | 1 0 | 1 0 | 1

asn1 2 | 4 2 | 4 2 | 4 2 | 4 2 | 4

client 1 | 7 1 | 7 1 | 7 1 | 5 1 | 7

server 2 | 6 1 | 6 1 | 6 1 | 4 1 | 6

x509 1 | 5 0 | 5 0 | 5 0 | 5 0 | 5

pdftoppm 3 | 16 4 | 14 3 | 14 3 | 13 3 | 13

pdf_fuzzer 3 | 16 3 | 13 2 | 13 2 | 8 2 | 12

pdfimages 4 | 13 5 | 10 4 | 11 3 | 11 4 | 11

sqlite3_fuzz 3 | 10 5 | 13 3 | 11 3 | 10 4 | 13

sndfile_fuzzer 7 | 8 7 | 8 7 | 8 8 | 8 7 | 8

total 49 | 131 43 | 118 42 | 118 44 | 112 44 | 120

Result 2: FOX triggers up to 16.67% more ground-truth bugs

compared to the state-of-the-art fuzzers on Magma and when

coupled with dictionary uncovers 20 unique vulnerabilities in

popular programs including eight that were previously unknown.

4.3 RQ3: Control Space Reduction
In our stochastic control framework, the control space refers to the

pool of seeds available for a fuzzer to select from during fuzzing.

Table 6: Cumulative number of unique bugs identified by FOX and
FOX+D against three fuzzers in FuzzBench Programs and standalone
programs for 24 hours over 10 runs

Targets FOX AFLPP AFLPP+C FOX+D AFLPP+CD

nm-new 1 0 1 2 1

size 2 2 1 2 1

objdump 1 0 1 1 1

pdftotext 4 2 4 12 4

woff2 1 1 1 1 0

sqlite3 0 0 1 1 0

libxslt 0 0 0 1 0

total 9 5 9 20 7

Unlike conventional coverage-guided fuzzers such as AFL++, which

choose the next seed from a seed queue, FOX takes a different

approach by scheduling based on frontier branches rather than

individual seeds. AFL++, as the fuzzing campaign advances, adds

more seeds to the queue, complicating the decision of which seed to

schedule next. To address this complexity, AFL++ employs various

techniques to manage the seed queue and prioritize specific seeds.

In contrast, FOX’s scheduling strategy focuses on frontier branches.

To assess the reduction in control space resulting from scheduling

over frontier branches instead of seeds, we compare the number

of frontier branches explored by FOX with the number of seeds

explored by AFL++ throughout a fuzzing campaign. This compari-

son provides insights into the effectiveness of FOX’s approach in

streamlining the decision-making process during fuzzing.

As illustrated in Figure 3, the control space of AFL++ (i.e., the

number of seeds) increases monotonically as it fuzzes xmllint,
requiring more time to iterate through the entire seed corpus. In

contrast, FOX reasons over a compact set of frontier branches that

does not dramatically increase as the fuzzing campaign progresses.

In fact, on some targets such as readelf, the set of frontier branches
even decreases. The control space comparison between FOX and

AFL++ on 15 standalone programs at 12 and 24 hours, respectively,

is presented in Table 7. FOX demonstrates a remarkable median

reduction in the control space by 58.20% during a 24-hour fuzzing

campaign. Particularly noteworthy is FOX’s ability to reduce the

control space by a factor of 7 on programs like readelf.

Result 3: FOX reduces the control space by 49.18% for 12-hour

run and 58.20% for 24-hour run when compared with AFL++.

4.4 RQ4: Ablation Study
To quantify the contribution of the scheduling and mutation strate-

gies employed by FOX (§4.1), we compare three different variants of

FOX: (i) FOX-BASE: representing FOXwith both the scheduling and

mutator components deactivated and serving as the baseline; (ii)

FOX-SCHED: employing only the optimization-guided scheduler;

and (iii) FOX: enabling both the scheduler and the optimization-

guided mutator. We measure the code coverage achieved by these

three variants (FOX-BASE, FOX-SCHED, and FOX) on our 15 stan-

dalone programs across 10 trials, each lasting 1 hour.
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Figure 3: Control space comparison of FOX with AFLPP on
xmllint over the course of a 24 hour fuzzing campaign.

Table 7: Control space comparison of FOX with AFLPP on 15 stan-
dalone programs at both 12 hours and 24 hours over 10 runs.

Targets # FOX Frontier # AFLPP Seeds
12 hrs 24 hrs 12 hrs 24 hrs

bsdtar 1,131 1,224 2,226 2,929

exiv2 2,953 3,057 2,121 2,446

ffmpeg 5,615 5,772 6,320 8,976

jasper 1,038 1,034 1,272 1,331

nm-new 971 944 1,970 2,772

objdump 1,299 1,285 3,239 3,940

pdftotext 929 981 1,466 1,661

readelf 1,561 1,215 7,075 8,970

size 671 670 1,470 1,692

strip-new 1,212 1,210 2,232 2,866

tcpdump 2,792 3,019 3,642 4,946

tiff2pdf 1,755 1,768 4,125 4,670

tiff2ps 1,093 1,098 2,316 2,692

tiffcrop 1,770 1,764 4,286 4,940

xmllint 1,894 1,964 2,731 3,366

Mean decrease 39.17 % 49.10%

Median decrease 49.18 % 58.20%

The results of our ablation study are presented in Table 8. FOX

achieves an average of 20.07% more coverage than FOX-BASE and

9.23% more coverage than FOX-SCHED. These results explicitly

demonstrate the importance and contributions of both FOX sched-

uler and mutator in enhancing the overall performance. Notably,

the frontier-branch-based scheduling alone results in an almost

universal performance improvement of up to 27.2% in mean cover-

age on pdftotext over the baseline, with the sole exception being

xmllint. We attribute this anomaly to the fact that xmllint seems

to have an unusually large control space where the number of fron-

tier branches exceeds the number of seeds in the first hour. This

trend is visualized in Figure 3, comparing the control space of FOX

against AFL++. We plan to further investigate this effect in the

future. Similarly, enabling the Newton’s method mutator yields a

nearly unanimous gain of up to 31.9% in mean coverage, with only

a single exception of tiff2ps. We found that tiff2ps has a large

proportion of non-convex branches. We discuss this phenomenon

in greater depth in §4.5. Improving our mutator for non-convex

branches is an important direction that we plan to pursue in future

work.

Result 4: Frontier-branch-based scheduling and Newton-step-

based mutator both contribute to the 20.07% edge coverage im-

provement of FOX over the baseline fuzzer in the first hour.

Table 8: Mean edge coverage of FOX against its two variants on 15
standalone programs over 10 fuzzing campaigns run for 1 hour each.
We mark the highest number in bold.

Targets FOX FOX-BASE FOX-SCHED

bsdtar 3,952 2,382 2,997

exiv2 6,606 6,152 6,291

ffmpeg 17,316 16,291 17,272

jasper 3,153 2,787 3,007

nm-new 3,050 2,249 2,449

objdump 4,996 3,672 4,017

pdftotext 2,567 1,905 2,423

readelf 3,235 2,846 3,152

size 2,621 2,131 2,351

strip-new 5,476 4,289 4,715

tcpdump 5,875 4,656 5,523

tiff2pdf 6,124 5,754 5,950

tiff2ps 4,373 4,202 4,458
tiffcrop 6,995 6,626 6,936

xmllint 4,220 4,429 4,090

Mean gain 20.07% 9.23%

Table 9: Frontier branch flipping comparison between FOX,
AFLPP+C, and AFLPP+CD. R stands for frontier branches reached,
and F stands for frontier branches flipped. We mark the highest
number in bold.

Targets FOX AFLPP AFLPP+C FOX+D AFLPP+CD
R F R F R F R F R F

bsdtar 2,873 1,694 1,714 776 1,837 890 3,083 1,854 3,017 1,723

exiv2 3,929 948 3,718 886 4,477 1,088 5,664 1,597 5,617 1,482

ffmpeg 12,839 7,800 10,219 6,093 8,922 4,478 13,993 7,766 8,908 3,921

jasper 1,718 624 1,492 501 1,704 631 1,759 638 1,696 624

nm-new 2,127 1,153 1,591 802 1,964 1,056 2,213 1,158 1,840 947

objdump 2,746 1,368 2,097 1,010 2,495 1,240 2,817 1,422 2,536 1,267

pdftotext 1,425 439 1,146 297 1,361 439 1,623 574 1,342 444

readelf 1,475 1,052 1,274 874 1,191 770 1,706 1,249 1,328 893

size 1,459 771 1,228 619 1,281 671 1,572 850 1,303 671

strip-new 2,974 1,526 2,421 1,212 2,615 1,381 3,238 1,633 2,625 1,351

tcpdump 6,601 3,578 5,196 2,670 6,789 3,496 6,816 3,784 6,850 3,592

tiff2pdf 3,316 1,575 3,211 1,483 3,227 1,487 3,326 1,572 3,230 1,502

tiff2ps 2,155 1,098 2,051 997 2,115 1,041 2,078 1,043 2,133 1,058
tiffcrop 3,695 1,887 3,590 1,784 3,642 1,812 3,769 1,942 3,611 1,784

xmllint 3,502 1,489 2,322 836 2,409 898 3,894 1,750 3,723 1,623

Mean gain 23.32% 33.99% 14.16% 21.05% — — 13.17% 19.47%

4.5 RQ5: FOX Performance Introspection
In RQ5, we delve into the sources of performance improvement of

FOX and leverage the fine-grained information it provides about

frontier branches to guide FOX mutator enhancements. Initially, we
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analyze how successful FOX is at reaching and flipping branches

compared to other state-of-the-art fuzzers. Subsequently, we assess

the relationship between branch convexity and FOX’s ability to flip

branches.

Reaching and Flipping Branches. Distinguishing itself from tra-

ditional coverage-guided fuzzers, FOX focuses on targeting and

flipping frontier branches to boost coverage. We expected FOX to

not only reach but also flip more branches than its competitors. In

10x24-hour fuzzing campaigns, we compared the branch-flipping

abilities of FOX and FOX+Dwith AFL++, AFLPP+C, and AFLPP+CD

(Table 9). The results show that both FOX and FOX+D reach and

successfully flip more frontier branches, with FOX flipping 33.99%

more than AFL++ and up to 21.05% more than AFLPP+C, while

FOX+D surpasses AFLPP+CD by 19.47%. This underscores FOX’s ef-

fective framework in achieving new coverage by handling different

types of frontier branches.

Branch Convexity Estimation. As FOX’s Newton’s method mu-

tator is primarily optimized for convex functions [18], we test FOX

on 15 standalone programs over 5x24-hour campaigns to evaluate

its performance on both convex and non-convex branches. Identify-

ing branch convexity is challenging, so we used midpoint convexity

checks during fuzzing as an estimate. We consider two inputs to be

midpoint convex if the branch distance of the average of the two

inputs is less than or equal to the average of the branch distances

of the two inputs.

The experiment involved trackingmidpoint convexity before and

after applying Newton’s method. For each branch, we calculated a

ratio of successful midpoint checks to branch reaches, indicating

convexity. Higher ratios suggest convex behavior, while lower ra-

tios indicate non-convexity. We expected FOX to excel in flipping

convex branches. This was analyzed using logistic regression, mod-

eling branch flips against the convexity estimate and its interaction

with the binary.

The regression (details in extended version of this work [50])

showed a positive correlation between branch convexity and FOX’s

flipping success, with a McFadden’s pseudo-R-squared of 0.048,

indicating a good fit [23, 30]. The correlation between branch con-

vexity and flipping success varied among programs, which was

anticipated. Although midpoint convexity is a useful estimate, it

does not always precisely represent a branch’s true convexity and

feasibility. For instance, non-convex branches might pass the con-

vexity check in certain regions, whereas some convex branches

could be infeasible, i.e., impossible to flip.

Result 5: FOX can flip up to 33.99%more frontier branches, show-

casing the efficacy of its stochastic control-guided framework.

5 Limitations and Future Work
In this section, we discuss the theoretical and engineering limita-

tions of the current design of FOX, and outline potential future

directions for improvement.

Newton’s Method. FOX utilizes Newton’s method to generate

inputs that decrease branch distances and potentially flip fron-

tier branches. The main advantage of this approach is its simplic-

ity and efficiency — it only needs two distinct inputs that reach

the target branch to estimate a Newton step. However, Newton’s

method struggles with non-convex functions like checksums, hash

functions, and complex string operations. We aim to enhance our

approach by selectively applying more accurate, albeit computa-

tionally intensive methods for hard-to-flip non-convex branches.

Local Search. The local search module of FOX establishes a local

linear approximation (w.r.t. a seed) of branch distance functions,

utilized by Newton’s method for generating new inputs. Despite

the accuracy demonstrated by methods like REDQUEEN [13], their

complexity and inefficiency make them less practical compared to

local search, as evidenced in our experimental findings. Currently,

local search utilizes AFL++ havoc for mutations, which has diffi-

culty in adaptively controlling the extent and scale of mutations,

resulting in inefficient and redundant mutations. In the future, we

aim to enhance FOX by integrating a sophisticated mutator capa-

ble of dynamically adjusting its mutation strategy based on past

successes in reaching the frontier branches.

Frontier Branch Scheduler. Our scheduler selects seeds associ-
ated with promising frontier branches, refining the control space

more effectively than traditional seed-based methods. However,

the scheduler depends on estimates of the likelihood of reducing

branch distance to identify promising branches. Despite the theoret-

ical optimality demonstrated in §A.1, its practical efficacy relies on

the accuracy of these estimates. In fact, we have identified several

pathological branches within target programs where the muta-

tor consistently decreases branch distances but fails to flip them

throughout the entire fuzzing campaign. We speculate that such

behavior suggests the infeasibility of these branches. Therefore, we

plan to modify the scheduler in the future to deploy an aggressive

re-weighting strategy to detect and deprioritize such pathological

branches.

Engineering Limitations. The current prototype of FOX is opti-

mized for integer and string comparisons, which are prevalent in

target applications, as shown by our coverage (§4.1) and bug discov-

ery (§4.2) performance. However, our prototype currently does not

support branches with floating point operations or variable-variable

string comparisons, which appear in benchmarks like lcms and

proj4. This limitation occasionally results in lower coverage com-

pared to leading fuzzers. Future updates will aim to expand FOX’s

applicability to these branch types and involve the community in

enhancing the tool through open-source contributions.

6 Related Work
Search-based Software Testing. Such approaches use metaheuris-

tic optimization for tasks like test-case generation [25, 34, 42]. Szek-

eres et al. [53] suggested using stochastic local search and taint

tracking for targeted fuzzing of specific branches to minimize the

distance to a target branch. However, FOX differs by using local

search to estimate the gradient of the branch distance function,

employing Newton’s method for more effective root finding. There

are also hybrid methods that integrate path constraint information

into their search strategy [19, 22, 27, 52], but these face scaling chal-

lenges in large programs. FOX avoids these challenges by focusing

on frontier branches and using branch distance as a metric to create

inputs that flip these branches.
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Mutator Policies. Several prior studies have aimed to optimize

mutation policies for fuzzing [13, 20, 35, 40, 48]. REDQUEEN [13]

employed input colorization with strong assumptions about input

consistency, contrasted by FOX’s flexible mutations. Angora [20]

used gradient descent and taint tracking, while FOX identifies input

bytes using local search and Newton’s method. Neuzz [48] adopted

a neural network approach for branch behavior, whereas FOX con-

structs a simpler model using fewer samples. Lastly, FairFuzz [36]

focused on rare branches, whereas FOX uses a branch distance

metric for targeted branch-flipping inputs.

Scheduler Policies. K-Scheduler [49] uses a centrality-based seed

scheduling approach that might overestimate the potential of seeds

to discover new edges, possibly including many unreachable nodes

in the entire CFG. In contrast, FOX uses data solely from frontier

branches for scheduling and mutation, leading to more accurate

decisions.

Feedback Metrics. Several studies use detailed feedback like path

coverage for seed selection [16, 56], which can lead to seed ex-

plosion [54]. FOX uses frontier branch granularity and branch

distances to manage this issue. Other research proposes different

feedback metrics, like data-flow coverage [26, 31] or objectives like

reaching sanitizer instrumentation [21, 47], to enhance bug discov-

ery by exploring various aspects of program state space. In the

future, we aim to investigate how FOX can be combined with these

diverse fuzzing objectives.

7 Conclusion
In conclusion, this paper presents a unified framework for coverage-

guided mutation-based fuzzing by treating fuzzing as an online

stochastic control problem. Our extensive experimental results

demonstrate that our proof-of-concept implementation FOX can

address many challenges of coverage-guided fuzzing for large and

complex programs.
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A Theory Addendum
A.1 Proof of Theorem 1

Proof. Let expected new coverage gain given seed list 𝑆𝑖 and

chosen seed index 𝑢𝑖 be defined as:∑︁
𝑏∈𝐵𝑖

Pr(𝑏 flips | 𝑚𝑢𝑡 (𝑆𝑖 [𝑢𝑖 ])) (14)

We can transform Equation 14 to sum over the set of all branches

𝐵 instead of the set of not-flipped branches at stage 𝑖 𝐵𝑖 :∑︁
𝑏∈𝐵

Pr(𝑏 not flipped prior 𝑖) Pr(𝑏 flips | 𝑚𝑢𝑡 (𝑆𝑖 [𝑢𝑖 ])) (15)

Now consider an optimal schedule 𝜋 = [𝑢1, 𝑢2, ..., 𝑢𝑛]. Given 𝜋 , we
can obtain another assignment 𝜋 ′ from 𝜋 by exchanging 𝑢1 with a

𝑢′
1
such that 𝑢′

1
is the first greedy choice:∑︁

𝑏∈𝐵
Pr(𝑏 flips | 𝑚𝑢𝑡 (𝑆1 [𝑢1]))

≤
∑︁
𝑏∈𝐵

Pr(𝑏 flips | 𝑚𝑢𝑡 (𝑆1 [𝑢′1])) (16)

To simplify the equations below, let:

𝑝 = Pr(𝑏 flips | 𝑚𝑢𝑡 (𝑆1 [𝑢1]))
𝑝′ = Pr(𝑏 flips | 𝑚𝑢𝑡 (𝑆1 [𝑢′1]))

𝑞 = max

𝑖
Pr(𝑏 flips | 𝑚𝑢𝑡 (𝑆𝑖 [𝑢𝑖 ]))

(17)

The total expected coverage gain for 𝑢1 is then:∑︁
𝑏∈𝐵

[
𝑝 + (1 − 𝑝) (𝑞 + (1 − 𝑞)𝑞 + ... + (1 − 𝑞)𝑛−2𝑞)

]
(18)

and analogously for 𝑢′
1
:∑︁

𝑏∈𝐵

[
𝑝′ + (1 − 𝑝′) (𝑞 + (1 − 𝑞)𝑞 + ... + (1 − 𝑞)𝑛−2𝑞)

]
(19)

Subtracting Equation 18 from Equation 19, we get:∑︁
𝑏∈𝐵

[
(𝑝′ − 𝑝) (1 − (𝑞 + (1 − 𝑞)𝑞 + ... + (1 − 𝑞)𝑛−2𝑞))

]
(20)

Note that the term involving 𝑞 is in fact a CDF of the geometric

distribution. We can therefore simplify further:∑︁
𝑏∈𝐵

[
(𝑝′ − 𝑝) (1 − (1 − (1 − 𝑞)𝑛−1))

]
(21)∑︁

𝑏∈𝐵

[
(𝑝′ − 𝑝) (1 − 𝑞)𝑛−1

]
(22)

Since 𝑞 is a probability, therefore 0 ≤ 𝑞 ≤ 1, the equation above

can be bounded as follows:

0 ≤
∑︁
𝑏∈𝐵

[
(𝑝′ − 𝑝) (1 − 𝑞)𝑛−1

]
≤

∑︁
𝑏∈𝐵
(𝑝′ − 𝑝) (23)

Note that 𝑝′ − 𝑝 ≥ 0 since 𝑢′
1
is the first greedy choice. Therefore,

the total expected coverage gain of 𝑢′
1
is at least as high as the

total expected coverage gain of the optimal assignment 𝑢1. This

argument exactly applies to the assignment 𝑢2, 𝑢3, ..., 𝑢𝑛 . Therefore,

the greedy scheduling strategy is the optimal scheduling strategy

for fuzzing as online stochastic control. □
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