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The software that is being written is getting bigger and increasingly complex. This growing complexity can
be attributed to multiple factors ranging from high consumer expectations for new features, diversification of
employed software stacks to meet those expectations, and increasing proliferation of AI-based tooling allowing
developers to write code at break-neck speed [1].

As prior studies have shown, rapid software development often leads to the introduction of bugs at a similar
pace [2, 3]. Bugs can lead software into unintended states, some of which adversaries may exploit to mount attacks,
ranging from making the software perform unintended functions to leaking sensitive data. Consequently, testing
code—especially newly-added code—to ensure it is bug-free is crucial.

Dynamic software testing enables scalable analysis by reasoning about program behavior based on the paths
exercised by test inputs. Fuzzing is a dynamic testing technique highly effective at uncovering vulnerabilities at
scale [4] and is widely endorsed by government agencies [5] and corporations [6, 7]. However, existing fuzzing
approaches struggle to uncover bugs that are deeply hidden in the software or lack effective oracles to flag their
discovery. Furthermore, current tooling is not designed with the user experience in mind creating friction for
widespread adoption.

My research vision is to enhance software testing techniques to uncover hard-to-detect bugs and to democratize
fuzzing by streamlining its integration into the software development pipeline. To expand the frontier of bugs
fuzzing can uncover, I have contributed towards improving the core components of dynamic testing. My work has
uncovered 25 previously unknown vulnerabilities, with 5 CVEs assigned. Part of my research has been upstreamed
into popular state of-the-art fuzzers like AFL++1 and LibAFL2. Furthermore, some of my works were developed
in close collaboration with major industry players, including Oracle. My key contributions have been in:

• Augmenting the input generation process using the target’s domain knowledge to make input space explo-
ration more efficient [8, 9].

• Developing specifications to find bugs that were previously hard to find automatically [10].

• Crafting program representations that allow fuzzers to rigorously test software patches while also expanding
their coverage to hard-to-fuzz code regions [11, 12].

Going forward, my research will focus on three main directions to realize my research vision. First, I will
develop highly automated testing solutions that help developers detect semantic bugs, which are challenging to
identify automatically due to their reliance on specialized domain knowledge. Second, as the software ecosystem
becomes increasingly heterogeneous with diverse software components interacting, it is crucial to test the inter-
faces where these interactions occur. To address this, I will create methodologies and metrics for assessing the
correctness of cross-component interactions at scale. Finally, to encourage the widespread adoption of fuzzing,
it is essential to minimize the friction developers face when integrating it into their development pipelines. I will
achieve this by building agentic solutions to streamline end-to-end testing integration and by providing enriched
feedback that helps developers better understand the quality of their testing efforts.

Prior and Current Research
My research till now has focused on making fuzzing more effective at discovering bugs hidden deep within soft-
ware, especially those requiring a complex set of triggering preconditions. I achieved this by investigating strate-
gies to enhance various components of dynamic testing, including input generation, specification creation, and
program representation refinement for testing by incorporating domain knowledge from the software under test.
Additionally, in the spirit of open science and to promote research reproducibility, all my published research is
accompanied by reproducible software artifacts.

Optimizing Input Generation [8, 9]. Uncovering deep bugs in targets that accept structured input, such as lan-
guage interpreters, demands the generation of syntactically valid inputs. To achieve this, existing fuzzers use
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context-free grammars (CFG) to produce test inputs and apply grammar-aware mutations to maintain syntactic
validity. However, when fuzzers use CFG production rules to generate inputs, they end up biased in their sampling
of the input space due to the structure of the rules. Additionally, existing mutation operators in fuzzers perform
small-scale mutations, which can be wasteful if the fuzzer is exploring grammar regions irrelevant to triggering
deep bugs. With Gramatron [8], I introduce grammar automatons, a structural transformation of the input grammar
which eliminates the sampling bias, and aggressive mutation operators to ensure the fuzzer does not get stuck in
local minimas of coverage, enabling deeper testing of the software target. This framework uncovered 10 previ-
ously unknown vulnerabilities across three popular language interpreters including bugs that interpreter developers
described as revealing ”significant misunderstandings” of core mechanisms3. Owing to its evident effectiveness,
Gramatron was upstreamed as a dedicated fuzzing mode in popular state-of-the-art fuzzers, AFL++, and LibAFL.

While Gramatron addresses the challenges of testing software with a known input structure, in certain domains,
such as closed-source firmware on embedded devices, the accepted input structure is often unknown. Vendor-
developed applications in embedded firmware are particularly under-vetted, making them more prone to vulnera-
bilities. Analyzing these applications is challenging because inferring their required input structure is non-trivial.
To solve this issue, in FirmFuzz [9], I leverage the web application interfaces of these embedded firmware to gen-
erate syntactically valid inputs in conjunction with full-system emulation to trigger deep paths within the target
applications. Using this domain-informed strategy, FirmFuzz uncovered seven previously undisclosed vulnerabil-
ities with four CVE assigned. With EPOXY [13], we improved the state of security for embedded firmware even
further by leveraging compiler-based instrumentation to enforce the principle of least privilege.

Enhancing Specifications [10]. Existing fuzzers are primarily designed to detect memory safety bugs, leveraging
well-defined specifications that enable checking when an input triggers memory safety violations. However, iden-
tifying logical bugs—errors that violate an application’s intended functionality—poses a different challenge, as
there are no readily available specifications to detect when these bugs are triggered. One common scenario where
such logic-based vulnerabilities arise for which no readily available specifications exist is during the deserialization
of untrusted input [14]. Automatically uncovering these vulnerabilities requires navigating a large input space and
flagging inputs that trigger these deserialization bugs. In Crystallizer [10], I address this challenge by formulating
gadget graphs which Crystallizer uses to systematically navigate the large input space and also detect deserializa-
tion bugs when they are triggered. Crystallizer helped uncover previously unknown deserialization vulnerabilities
in popular enterprise applications such as Apache Pulsar and Kafka. In addition, it also outperformed existing
state-of-the-art automated solutions in uncovering such vulnerabilities.

Refining Program Representations [11, 12] The program representation employed by a fuzzer shapes the type
of feedback it receives from the software under test during input evaluation, thereby guiding how the fuzzer ex-
plores and navigates the input space of the software under test. Consequently, it is crucial that the fuzzer’s program
representation aligns with its testing objectives. Building on this insight, we developed optimized program rep-
resentations tailored for two distinct use cases: (i) incorporating directedness into the fuzzing process, and (ii)
maximizing the code coverage achieved by the fuzzer.

In certain software quality control tasks, such as patch or regression testing, it is necessary to test specific code
locations rather than the entire application. Existing directed fuzzers use distance minimization on a control-flow
graph representation of the program to generate inputs that bring the fuzzer closer to the target location. However,
this approach incurs significant overhead for each test case evaluation, slowing progress toward testing the desired
location. In SieveFuzz [11], I introduce tripwiring, a technique that refines the control-flow graph representation to
bias the fuzzer toward exploring target-reachable paths, eliminating the high overhead of distance calculations. By
augmenting the program representation with tripwiring, SieveFuzz accelerates testing of target locations by 1.4x
compared to state-of-the-art directed fuzzers.

In contrast to directed fuzzing, general-purpose fuzzing aims to maximize the code a fuzzer can reach to increase
its bug discovery rate. This necessitates program representations specifically designed to maximize a fuzzer’s code
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coverage. As part of FOX [12], we introduce frontier branches, a program representation allowing a fuzzer to
leverage finer-grained data flow information to maximize coverage without significantly expanding the state space
to explore. Our frontier-branch based representation coupled with control theory-guided optimization routines
enabled uncovering up to 26% more coverage than current state-of-the-art fuzzers expanding the reach of fuzzers
to previously untested code regions in heavily analyzed software. As part of my ongoing work, I am developing a
program representation designed to maximize bug discovery by making the bug-triggering input space visible to
fuzzers through sanitizer instrumentation. We have put together this work on bug-oriented fuzzing exploration into
a proposal for a Google Research Award.

Future Research Directions
Semantic Bug Discovery. Semantic bugs cause an application to enter invalid states that violate its intended
functionality. Uncovering such bugs is challenging because synthesizing oracles to detect them requires a spec-
ification against which inputs can be checked. Additionally, there are currently no generalized feedback metrics
to quantify how much of the semantic space has been explored. To tackle this issue, I will adopt data-driven ap-
proaches to synthesize semantic models of the software under test. These models will not only serve as oracles
to flag semantic violations but also act as coverage feedback mechanisms for test input generators. Finally, in
addition to the semantic models, I will use formal language theory based approaches to create input space models
that testing frameworks can use to track previously tested regions of the input space, ensuring more efficient use of
compute resources for testing.

Short-term Plan. I will extend the work done as part of Crystallizer [10] by developing techniques to uncover
semantic bugs rooted in the deserialization of trusted input, with a language-agnostic approach. I will first inves-
tigate known exploitation primitives to identify common semantics they use and then develop tooling to perform
lightweight, semantic-guided searches over codebases to discover previously unknown primitives automatically.

Agentic solutions to Democratize Fuzzing. One key to improving the security of deployed software is the
widespread adoption of fuzzing across all application domains. Employing fuzzing in and of itself is not hard,
owing to the methodology’s simplistic design. However, with current tooling, ensuring that the testing being
performed is effective is non-trivial, requiring in-depth knowledge about the application under test and the fuzzer
being used. My key insight is to enhance the developer experience when deploying fuzzing by enriching the
feedback that fuzzers provide while testing. I will create debugging frameworks that help a developer model
inputs the fuzzer is generating, identify preconditions that a fuzzer is having a hard time solving (fuzz blockers)
and ways for a developer to easily test different strategies to overcome the testing roadblocks. Furthermore, I
will propose methodologies to help developers identify which fuzzer-found crashes to prioritize for triaging and
patching. Finally, to democratize the usage of fuzzing and make it easier for developers to integrate it into their
development pipeline, I will build LLM-powered agents that can both recommend and deploy effective fuzzing
setup based on developers’ testing needs.

Short-term Plan. I will develop visualization techniques that can handle large codebases and allow developers
to pinpoint where fuzz blockers are and how close they are to being solved. The visualization tooling will be
interactive, enabling developers to direct fuzzing compute resources toward more promising blockers.

Evaluate Cross-Interface Interactions. Modern software systems consist of heterogeneous applications with
varying safety guarantees and memory models that communicate across multiple layers of abstraction. Ensuring
the security of these systems requires verifying the correctness of the interfaces through which communication
occurs between diverse software components. This involves validating that an adversary cannot exploit an interface
in a way that compromises the safety guarantees of the interacting components. I will develop testing frameworks
that are designed to perform directed testing of interfaces between components. I will create feedback metrics that
will allow a testing framework to quantify how robustly interfaces have been tested.
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Short-term Plan. Rust is becoming an increasingly popular systems language due to its memory safety guar-
antees. However, a subset of features that enable interoperability with memory-unsafe languages can undermine
Rust’s safety guarantees [15]. Existing static solutions for evaluating Rust’s interoperability with unsafe languages
are incomplete and dynamic solutions require significant manual effort. I will develop hybrid testing solutions that
combine dynamic, feedback-driven fuzzing approaches to explore the program state space, augmented by statically
gathered target information. We are preparing a grant proposal for this research direction, which we plan to submit
next year.

References
[1] Stack Overflow Developer Survey 2024. https://survey.stackoverflow.co/2024/ai/, July 2024.
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